从泡菜中分离出的左旋乳杆菌 IBARAKI-TS3 通过 Toll-Like 受体 2 促进人类 M2 巨噬细胞产生白细胞介素-10

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Function Pub Date : 2024-08-29 DOI:10.1002/cbf.4110
Keisuke Tobita, Satoru Iwasa
{"title":"从泡菜中分离出的左旋乳杆菌 IBARAKI-TS3 通过 Toll-Like 受体 2 促进人类 M2 巨噬细胞产生白细胞介素-10","authors":"Keisuke Tobita,&nbsp;Satoru Iwasa","doi":"10.1002/cbf.4110","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>M2 macrophages play an important role in food allergy. Several studies have reported that lactic acid bacteria isolated from pickles exert antiallergic effects. We investigated the effects of several strains of lactic acid bacteria on the immune function of M2 macrophages. M2 macrophages differentiated from THP-1 cell line by interleukin-4 (IL-4) and IL-13 strongly expressed CD163, CD206, and HMOX1 mRNA. <i>Levilactobacillus brevis</i> IBARAKI-TS3 (IBARAKI-TS3) isolated from pickles was identified as a lactic acid bacterium that enhances the expressions of IL-10 and EBI3 mRNA in M2 macrophages. IBARAKI-TS3 induced the expression of genes involved in Toll-like receptor (TLR) signaling, such as IRAK, mitogen-activated protein kinases (MAPKs), and NF-κB mRNA. IBARAKI-TS3–induced IL-10 production was suppressed by anti-TLR2–neutralizing antibodies. Furthermore, the IBARAKI-TS3–induced increase in IL-10 levels was significantly reduced in TLR2–knockdown M2 macrophages compared to M2 macrophages. These results suggest that IBARAKI-TS3 promotes of IL-10 production via TLR2 in M2 macrophages.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"42 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Levilactobacillus brevis IBARAKI-TS3 Isolated From Pickles Promotes Production of Interleukin-10 via Toll-Like Receptor 2 in Human M2 Macrophages\",\"authors\":\"Keisuke Tobita,&nbsp;Satoru Iwasa\",\"doi\":\"10.1002/cbf.4110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>M2 macrophages play an important role in food allergy. Several studies have reported that lactic acid bacteria isolated from pickles exert antiallergic effects. We investigated the effects of several strains of lactic acid bacteria on the immune function of M2 macrophages. M2 macrophages differentiated from THP-1 cell line by interleukin-4 (IL-4) and IL-13 strongly expressed CD163, CD206, and HMOX1 mRNA. <i>Levilactobacillus brevis</i> IBARAKI-TS3 (IBARAKI-TS3) isolated from pickles was identified as a lactic acid bacterium that enhances the expressions of IL-10 and EBI3 mRNA in M2 macrophages. IBARAKI-TS3 induced the expression of genes involved in Toll-like receptor (TLR) signaling, such as IRAK, mitogen-activated protein kinases (MAPKs), and NF-κB mRNA. IBARAKI-TS3–induced IL-10 production was suppressed by anti-TLR2–neutralizing antibodies. Furthermore, the IBARAKI-TS3–induced increase in IL-10 levels was significantly reduced in TLR2–knockdown M2 macrophages compared to M2 macrophages. These results suggest that IBARAKI-TS3 promotes of IL-10 production via TLR2 in M2 macrophages.</p></div>\",\"PeriodicalId\":9669,\"journal\":{\"name\":\"Cell Biochemistry and Function\",\"volume\":\"42 7\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Function\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4110\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.4110","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

M2 巨噬细胞在食物过敏中发挥着重要作用。一些研究报告称,从腌菜中分离出的乳酸菌具有抗过敏作用。我们研究了几种乳酸菌对 M2 巨噬细胞免疫功能的影响。通过白细胞介素-4(IL-4)和 IL-13 从 THP-1 细胞系分化出的 M2 巨噬细胞强烈表达 CD163、CD206 和 HMOX1 mRNA。从腌菜中分离出的Levilactobacillus brevis IBARAKI-TS3(IBARAKI-TS3)被鉴定为一种乳酸菌,能增强M2巨噬细胞中IL-10和EBI3 mRNA的表达。IBARAKI-TS3可诱导参与Toll样受体(TLR)信号转导的基因表达,如IRAK、丝裂原活化蛋白激酶(MAPKs)和NF-κB mRNA。抗TLR2-中和抗体抑制了IBARAKI-TS3诱导的IL-10产生。此外,TLR2-敲除的 M2 巨噬细胞与 M2 巨噬细胞相比,IBARAKI-TS3 诱导的 IL-10 水平升高明显降低。这些结果表明,IBARAKI-TS3 可通过 TLR2 促进 M2 巨噬细胞产生 IL-10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Levilactobacillus brevis IBARAKI-TS3 Isolated From Pickles Promotes Production of Interleukin-10 via Toll-Like Receptor 2 in Human M2 Macrophages

M2 macrophages play an important role in food allergy. Several studies have reported that lactic acid bacteria isolated from pickles exert antiallergic effects. We investigated the effects of several strains of lactic acid bacteria on the immune function of M2 macrophages. M2 macrophages differentiated from THP-1 cell line by interleukin-4 (IL-4) and IL-13 strongly expressed CD163, CD206, and HMOX1 mRNA. Levilactobacillus brevis IBARAKI-TS3 (IBARAKI-TS3) isolated from pickles was identified as a lactic acid bacterium that enhances the expressions of IL-10 and EBI3 mRNA in M2 macrophages. IBARAKI-TS3 induced the expression of genes involved in Toll-like receptor (TLR) signaling, such as IRAK, mitogen-activated protein kinases (MAPKs), and NF-κB mRNA. IBARAKI-TS3–induced IL-10 production was suppressed by anti-TLR2–neutralizing antibodies. Furthermore, the IBARAKI-TS3–induced increase in IL-10 levels was significantly reduced in TLR2–knockdown M2 macrophages compared to M2 macrophages. These results suggest that IBARAKI-TS3 promotes of IL-10 production via TLR2 in M2 macrophages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
期刊最新文献
The Mechanisms and Implications of Cardiolipin in the Regulation of Cell Death HDAC4-AS1/CTCF Transcriptionally Represses HDAC4 Under Stress, Whereas HDAC4 Inhibits Stress-Induced Syncytiotrophoblast Cellular Pyroptosis by Deacetylating NLRP3 and GSDMD Necroptotic Suppression of Lung Cancer Cell Proliferation and Migration: A Comprehensive In Vitro and In Silico Study to Determine New Molecular Targets for Pexidartinib E7HPV16 Oncogene and 17beta-Estradiol Stress, Promotes Oncogenic microRNA Expression Patterns, Cell Proliferation and Cervical Intraepithelial Neoplasia 1. Neutrophil Depletion Reduced the Relative Abundance of Unsaturated Long-Chain Fatty Acid Synthesis Microbiota and Intestinal Lipid Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1