Hansel Alex Hobbie, James L. Doherty, Brittany N. Smith, Paolo Maccarini, Aaron D. Franklin
{"title":"使用车床气溶胶喷射打印技术在柔性基底和充气导管上进行共形打印电子器件","authors":"Hansel Alex Hobbie, James L. Doherty, Brittany N. Smith, Paolo Maccarini, Aaron D. Franklin","doi":"10.1038/s41528-024-00340-0","DOIUrl":null,"url":null,"abstract":"With the growth of additive manufacturing (AM), there has been increasing demand for fabricating conformal electronics that directly integrate with larger components to enable unique functionality. However, fabrication of conformal electronics is challenging because devices must merge with host substrates regardless of curvilinearity, topography, or substrate material. In this work, we employ aerosol jet (AJ) printing, an AM method for jet printing electronics using ink-based materials, and a custom-made lathe mechanism for mounting flexible substrates and 3D objects on a rotating axis. Using this method of lathe-based AJ printing, conformal electronics are printed around the circumference of rotational bodies with 3D curvilinear surfaces through cylindrical-coordinate motion. We characterize the diverse capabilities of lathe AJ (LAJ) printing and demonstrate flexible conformal electronics including multilayer carbon nanotube transistors. Lastly, a graphene sensor is conformally printed on an inflated catheter balloon for temperature and inflation monitoring, thus highlighting the versatilities of LAJ printing.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":12.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00340-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing\",\"authors\":\"Hansel Alex Hobbie, James L. Doherty, Brittany N. Smith, Paolo Maccarini, Aaron D. Franklin\",\"doi\":\"10.1038/s41528-024-00340-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growth of additive manufacturing (AM), there has been increasing demand for fabricating conformal electronics that directly integrate with larger components to enable unique functionality. However, fabrication of conformal electronics is challenging because devices must merge with host substrates regardless of curvilinearity, topography, or substrate material. In this work, we employ aerosol jet (AJ) printing, an AM method for jet printing electronics using ink-based materials, and a custom-made lathe mechanism for mounting flexible substrates and 3D objects on a rotating axis. Using this method of lathe-based AJ printing, conformal electronics are printed around the circumference of rotational bodies with 3D curvilinear surfaces through cylindrical-coordinate motion. We characterize the diverse capabilities of lathe AJ (LAJ) printing and demonstrate flexible conformal electronics including multilayer carbon nanotube transistors. Lastly, a graphene sensor is conformally printed on an inflated catheter balloon for temperature and inflation monitoring, thus highlighting the versatilities of LAJ printing.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00340-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00340-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00340-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
随着增材制造(AM)技术的发展,人们对制造保形电子元件的需求日益增长,这种电子元件可直接与较大的元件集成,从而实现独特的功能。然而,保形电子器件的制造具有挑战性,因为器件必须与主机基底融合,而不受曲率、地形或基底材料的影响。在这项工作中,我们采用了气溶胶喷射(AJ)打印技术(一种使用墨基材料喷射打印电子元件的 AM 方法)和定制的车床装置,用于在旋转轴上安装柔性基底和三维物体。使用这种基于车床的 AJ 打印方法,可以通过圆柱坐标运动在旋转体的圆周上打印出具有三维曲线表面的保形电子器件。我们描述了车床 AJ(LAJ)打印的各种能力,并展示了包括多层碳纳米管晶体管在内的柔性保形电子器件。最后,我们在充气导管球囊上保形打印了一个石墨烯传感器,用于温度和充气监测,从而突出了 LAJ 打印的多功能性。
Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing
With the growth of additive manufacturing (AM), there has been increasing demand for fabricating conformal electronics that directly integrate with larger components to enable unique functionality. However, fabrication of conformal electronics is challenging because devices must merge with host substrates regardless of curvilinearity, topography, or substrate material. In this work, we employ aerosol jet (AJ) printing, an AM method for jet printing electronics using ink-based materials, and a custom-made lathe mechanism for mounting flexible substrates and 3D objects on a rotating axis. Using this method of lathe-based AJ printing, conformal electronics are printed around the circumference of rotational bodies with 3D curvilinear surfaces through cylindrical-coordinate motion. We characterize the diverse capabilities of lathe AJ (LAJ) printing and demonstrate flexible conformal electronics including multilayer carbon nanotube transistors. Lastly, a graphene sensor is conformally printed on an inflated catheter balloon for temperature and inflation monitoring, thus highlighting the versatilities of LAJ printing.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.