土地-大气反馈促成旱地自我扩张

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2024-08-29 DOI:10.1126/science.adn6833
Akash Koppa, Jessica Keune, Dominik L. Schumacher, Katerina Michaelides, Michael Singer, Sonia I. Seneviratne, Diego G. Miralles
{"title":"土地-大气反馈促成旱地自我扩张","authors":"Akash Koppa,&nbsp;Jessica Keune,&nbsp;Dominik L. Schumacher,&nbsp;Katerina Michaelides,&nbsp;Michael Singer,&nbsp;Sonia I. Seneviratne,&nbsp;Diego G. Miralles","doi":"10.1126/science.adn6833","DOIUrl":null,"url":null,"abstract":"<div >Dryland expansion causes widespread water scarcity and biodiversity loss. Although the drying influence of global warming is well established, the role of existing drylands in their own expansion is relatively unknown. In this work, by tracking the air flowing over drylands, we show that the warming and drying of that air contributes to dryland expansion in the downwind direction. As they dry, drylands contribute less moisture and more heat to downwind humid regions, reducing precipitation and increasing atmospheric water demand, which ultimately causes their aridification. In ~40% of the land area that recently transitioned from a humid region into a dryland, self-expansion accounted for &gt;50% of the observed aridification. Our results corroborate the urgent need for climate change mitigation measures in drylands to decelerate their own expansion.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dryland self-expansion enabled by land–atmosphere feedbacks\",\"authors\":\"Akash Koppa,&nbsp;Jessica Keune,&nbsp;Dominik L. Schumacher,&nbsp;Katerina Michaelides,&nbsp;Michael Singer,&nbsp;Sonia I. Seneviratne,&nbsp;Diego G. Miralles\",\"doi\":\"10.1126/science.adn6833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Dryland expansion causes widespread water scarcity and biodiversity loss. Although the drying influence of global warming is well established, the role of existing drylands in their own expansion is relatively unknown. In this work, by tracking the air flowing over drylands, we show that the warming and drying of that air contributes to dryland expansion in the downwind direction. As they dry, drylands contribute less moisture and more heat to downwind humid regions, reducing precipitation and increasing atmospheric water demand, which ultimately causes their aridification. In ~40% of the land area that recently transitioned from a humid region into a dryland, self-expansion accounted for &gt;50% of the observed aridification. Our results corroborate the urgent need for climate change mitigation measures in drylands to decelerate their own expansion.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adn6833\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adn6833","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

旱地扩张造成大面积缺水和生物多样性丧失。虽然全球变暖对干燥的影响已得到公认,但现有旱地在自身扩张中的作用却相对未知。在这项研究中,我们通过追踪流经旱地上空的空气,发现空气的变暖和干燥会导致旱地向下风向扩张。随着干燥,旱地向下风向湿润地区提供的水分和热量减少,降水量减少,大气需水量增加,最终导致旱地干旱化。在最近从湿润地区转变为旱地的约40%的陆地区域中,自我扩张占观测到的干旱化的50%。我们的研究结果证实,旱地迫切需要采取减缓气候变化的措施,以减缓自身的扩张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dryland self-expansion enabled by land–atmosphere feedbacks
Dryland expansion causes widespread water scarcity and biodiversity loss. Although the drying influence of global warming is well established, the role of existing drylands in their own expansion is relatively unknown. In this work, by tracking the air flowing over drylands, we show that the warming and drying of that air contributes to dryland expansion in the downwind direction. As they dry, drylands contribute less moisture and more heat to downwind humid regions, reducing precipitation and increasing atmospheric water demand, which ultimately causes their aridification. In ~40% of the land area that recently transitioned from a humid region into a dryland, self-expansion accounted for >50% of the observed aridification. Our results corroborate the urgent need for climate change mitigation measures in drylands to decelerate their own expansion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Durably reducing conspiracy beliefs through dialogues with AI Microbial dietary preference and interactions affect the export of lipids to the deep ocean Autoregulated splicing of TRA2β programs T cell fate in response to antigen-receptor stimulation Transcripts of repetitive DNA elements signal to block phagocytosis of hematopoietic stem cells Exploiting the mechanical effects of ultrasound for noninvasive therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1