通过控制晶界中的 Ag2Se 原位沉淀提高多晶 SnSe 的热电性能

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-09-01 DOI:10.1016/j.jmst.2024.08.009
Xing Yang, Chong-Yu Wang, Wang-Qi Bao, Ze Li, Zi-Yuan Wang, Jing Feng, Zhen-Hua Ge
{"title":"通过控制晶界中的 Ag2Se 原位沉淀提高多晶 SnSe 的热电性能","authors":"Xing Yang, Chong-Yu Wang, Wang-Qi Bao, Ze Li, Zi-Yuan Wang, Jing Feng, Zhen-Hua Ge","doi":"10.1016/j.jmst.2024.08.009","DOIUrl":null,"url":null,"abstract":"<p>Boundary engineering has proven effective in enhancing the thermoelectric performance of materials. SnSe, known for its low thermal conductivity, has garnered significant interest; however, its application is hindered by poor electrical conductivity. Herein, the Ag<sub>8</sub>GeSe<sub>6</sub> is introduced into the p-type polycrystalline SnSe matrix to optimize the thermoelectric performance, and the in-situ Ag<sub>2</sub>Se precipitates are formed in grain boundaries, which play dual roles, acting as an electron attraction center for improving hole concentration and a phonon scattering center for reducing lattice thermal conductivity. It effectively decouples the thermal and electrical transport properties to optimize the thermoelectric performance. Importantly, the amount of Ag<sub>2</sub>Se can be controlled by adjusting the amount of Ag<sub>8</sub>GeSe<sub>6</sub> added to the SnSe matrix. The introduction of Ag<sub>8</sub>GeSe<sub>6</sub> enhances electrical conductivity due to the increased hole carrier caused by the introduced Ag<sup>+</sup> and the formed electron attraction center (in-situ Ag<sub>2</sub>Se precipitates). Based on the DFT calculations, the band gap of the Ag<sub>8</sub>GeSe<sub>6</sub>-doped samples is considerably decreased, facilitating carrier transport. As a result, the electrical transport properties increase to 808 μW m<sup>−1</sup> K<sup>−2</sup> at 823 K for SnSe + 0.5 wt% Ag<sub>8</sub>GeSe<sub>6</sub>. In addition, in-situ Ag<sub>2</sub>Se precipitates in grain boundaries strongly enhance phonon scattering, causing a decrease in lattice thermal conductivity. Furthermore, the presence of defects contributes to a reduction in lattice thermal conductivity. Specifically, the thermal conductivity of SnSe + 1.0 wt% Ag<sub>8</sub>GeSe<sub>6</sub> decreases to 0.29 W m<sup>−1</sup> K<sup>−1</sup> at 823 K. Consequently, SnSe + 0.5 wt% Ag<sub>8</sub>GeSe<sub>6</sub> obtains a high ZT value of 1.7 at 823 K and maintains a high average <em>ZT</em> value of 0.57 over the temperature range of 323−773 K. Additionally, the mechanical properties of Ag<sub>8</sub>GeSe<sub>6</sub>-doped also show an improvement. These advancements can be applied to energy supply applications during deep space exploration.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting thermoelectric performance of polycrystalline SnSe by controlled in-situ Ag2Se precipitates in grain boundaries\",\"authors\":\"Xing Yang, Chong-Yu Wang, Wang-Qi Bao, Ze Li, Zi-Yuan Wang, Jing Feng, Zhen-Hua Ge\",\"doi\":\"10.1016/j.jmst.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Boundary engineering has proven effective in enhancing the thermoelectric performance of materials. SnSe, known for its low thermal conductivity, has garnered significant interest; however, its application is hindered by poor electrical conductivity. Herein, the Ag<sub>8</sub>GeSe<sub>6</sub> is introduced into the p-type polycrystalline SnSe matrix to optimize the thermoelectric performance, and the in-situ Ag<sub>2</sub>Se precipitates are formed in grain boundaries, which play dual roles, acting as an electron attraction center for improving hole concentration and a phonon scattering center for reducing lattice thermal conductivity. It effectively decouples the thermal and electrical transport properties to optimize the thermoelectric performance. Importantly, the amount of Ag<sub>2</sub>Se can be controlled by adjusting the amount of Ag<sub>8</sub>GeSe<sub>6</sub> added to the SnSe matrix. The introduction of Ag<sub>8</sub>GeSe<sub>6</sub> enhances electrical conductivity due to the increased hole carrier caused by the introduced Ag<sup>+</sup> and the formed electron attraction center (in-situ Ag<sub>2</sub>Se precipitates). Based on the DFT calculations, the band gap of the Ag<sub>8</sub>GeSe<sub>6</sub>-doped samples is considerably decreased, facilitating carrier transport. As a result, the electrical transport properties increase to 808 μW m<sup>−1</sup> K<sup>−2</sup> at 823 K for SnSe + 0.5 wt% Ag<sub>8</sub>GeSe<sub>6</sub>. In addition, in-situ Ag<sub>2</sub>Se precipitates in grain boundaries strongly enhance phonon scattering, causing a decrease in lattice thermal conductivity. Furthermore, the presence of defects contributes to a reduction in lattice thermal conductivity. Specifically, the thermal conductivity of SnSe + 1.0 wt% Ag<sub>8</sub>GeSe<sub>6</sub> decreases to 0.29 W m<sup>−1</sup> K<sup>−1</sup> at 823 K. Consequently, SnSe + 0.5 wt% Ag<sub>8</sub>GeSe<sub>6</sub> obtains a high ZT value of 1.7 at 823 K and maintains a high average <em>ZT</em> value of 0.57 over the temperature range of 323−773 K. Additionally, the mechanical properties of Ag<sub>8</sub>GeSe<sub>6</sub>-doped also show an improvement. These advancements can be applied to energy supply applications during deep space exploration.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.009\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

边界工程已被证明能有效提高材料的热电性能。SnSe 以其低热传导性著称,已引起人们的极大兴趣;然而,其应用却因导电性差而受到阻碍。在这里,为了优化热电性能,在 p 型多晶 SnSe 基体中引入了 Ag8GeSe6,并在晶界中形成了原位 Ag2Se 沉淀,这种沉淀具有双重作用,既是提高空穴浓度的电子吸引中心,又是降低晶格热导率的声子散射中心。它有效地解耦了热传输和电传输特性,从而优化了热电性能。重要的是,Ag2Se 的数量可以通过调整添加到 SnSe 基质中的 Ag8GeSe6 的数量来控制。Ag8GeSe6 的引入可增强导电性,这是由于引入的 Ag+ 和形成的电子吸引中心(原位 Ag2Se 沉淀)增加了空穴载流子。根据 DFT 计算,掺杂 Ag8GeSe6 的样品的带隙大大减小,从而促进了载流子的传输。因此,在 823 K 时,SnSe + 0.5 wt% Ag8GeSe6 的电传输特性增加到 808 μW m-1 K-2。此外,晶界中的 Ag2Se 原位析出物强烈增强了声子散射,导致晶格热导率下降。此外,缺陷的存在也会导致晶格热导率降低。因此,SnSe + 0.5 wt% Ag8GeSe6 在 823 K 时获得了 1.7 的高 ZT 值,并在 323-773 K 的温度范围内保持了 0.57 的高平均 ZT 值。这些进步可应用于深空探测中的能源供应应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting thermoelectric performance of polycrystalline SnSe by controlled in-situ Ag2Se precipitates in grain boundaries

Boundary engineering has proven effective in enhancing the thermoelectric performance of materials. SnSe, known for its low thermal conductivity, has garnered significant interest; however, its application is hindered by poor electrical conductivity. Herein, the Ag8GeSe6 is introduced into the p-type polycrystalline SnSe matrix to optimize the thermoelectric performance, and the in-situ Ag2Se precipitates are formed in grain boundaries, which play dual roles, acting as an electron attraction center for improving hole concentration and a phonon scattering center for reducing lattice thermal conductivity. It effectively decouples the thermal and electrical transport properties to optimize the thermoelectric performance. Importantly, the amount of Ag2Se can be controlled by adjusting the amount of Ag8GeSe6 added to the SnSe matrix. The introduction of Ag8GeSe6 enhances electrical conductivity due to the increased hole carrier caused by the introduced Ag+ and the formed electron attraction center (in-situ Ag2Se precipitates). Based on the DFT calculations, the band gap of the Ag8GeSe6-doped samples is considerably decreased, facilitating carrier transport. As a result, the electrical transport properties increase to 808 μW m−1 K−2 at 823 K for SnSe + 0.5 wt% Ag8GeSe6. In addition, in-situ Ag2Se precipitates in grain boundaries strongly enhance phonon scattering, causing a decrease in lattice thermal conductivity. Furthermore, the presence of defects contributes to a reduction in lattice thermal conductivity. Specifically, the thermal conductivity of SnSe + 1.0 wt% Ag8GeSe6 decreases to 0.29 W m−1 K−1 at 823 K. Consequently, SnSe + 0.5 wt% Ag8GeSe6 obtains a high ZT value of 1.7 at 823 K and maintains a high average ZT value of 0.57 over the temperature range of 323−773 K. Additionally, the mechanical properties of Ag8GeSe6-doped also show an improvement. These advancements can be applied to energy supply applications during deep space exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Unveiling the interaction between corrosion products and oxygen reduction on the corrosion of Mg–4Nd–0.4Zr alloy under thin electrolyte layers Synergistic inhibition to dissolution corrosion by de-twinning and precipitation in alumina-forming austenitic steel exposed to lead-bismuth eutectic with 10-8 wt.% oxygen at 600°C Effects of water content on the corrosion behavior of NiCu low alloy steel embedded in compacted GMZ bentonite In-situ nitrogen-doped carbon nanotube-encapsulated Co9S8 nanoparticles as self-supporting bifunctional air electrodes for zinc-air batteries A universal descriptor to determine the effect of solutes in segregation at grain boundaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1