Woochan Chung, Doohyung Kim, Juri Kim, Jongmin Park, Sungjun Kim, Sejoon Lee
{"title":"基于 MoS2/PZT 铁电场效应晶体管的光电调制人工突触,用于神经形态计算系统","authors":"Woochan Chung, Doohyung Kim, Juri Kim, Jongmin Park, Sungjun Kim, Sejoon Lee","doi":"10.1016/j.jmst.2024.06.058","DOIUrl":null,"url":null,"abstract":"<p>To present an advanced device scheme of high-performance optoelectronic synapses, herein, we demonstrated the electrically- and/or optically-drivable multifaceted synaptic capabilities on the 2D semiconductor channel-based ferroelectric field-effect transistor (FeFET) architecture. The device was fabricated in the form of the MoS<sub>2</sub>/PZT FeFET, and its synaptic weights were effectively controlled by dual stimuli (<em>i.e</em>., both electrical and optical pulses simultaneously) as well as single stimuli (<em>i.e</em>., either electrical or optical pulses alone). This could be attributed to the electrical pulse-tunable strong ferroelectric polarization in PbZr<em><sub>x</sub></em>Ti<sub>1−</sub><em><sub>x</sub></em>O<sub>3</sub> (PZT) as well as the polarization field-enhanced persistent photoconductivity effect in MoS<sub>2</sub>. Additionally, it was confirmed that the proposed device possesses substantial activity, achieving approximately 95% pattern recognition accuracy. The results substantiate the great potential of the 2D semiconductor channel-based FeFET device as a high-performance optoelectronic synaptic platform, marking a pivotal stride towards the realization of advanced neuromorphic computing systems.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optically and electrically modulated artificial synapses based on MoS2/PZT ferroelectric field-effect transistor for neuromorphic computing system\",\"authors\":\"Woochan Chung, Doohyung Kim, Juri Kim, Jongmin Park, Sungjun Kim, Sejoon Lee\",\"doi\":\"10.1016/j.jmst.2024.06.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To present an advanced device scheme of high-performance optoelectronic synapses, herein, we demonstrated the electrically- and/or optically-drivable multifaceted synaptic capabilities on the 2D semiconductor channel-based ferroelectric field-effect transistor (FeFET) architecture. The device was fabricated in the form of the MoS<sub>2</sub>/PZT FeFET, and its synaptic weights were effectively controlled by dual stimuli (<em>i.e</em>., both electrical and optical pulses simultaneously) as well as single stimuli (<em>i.e</em>., either electrical or optical pulses alone). This could be attributed to the electrical pulse-tunable strong ferroelectric polarization in PbZr<em><sub>x</sub></em>Ti<sub>1−</sub><em><sub>x</sub></em>O<sub>3</sub> (PZT) as well as the polarization field-enhanced persistent photoconductivity effect in MoS<sub>2</sub>. Additionally, it was confirmed that the proposed device possesses substantial activity, achieving approximately 95% pattern recognition accuracy. The results substantiate the great potential of the 2D semiconductor channel-based FeFET device as a high-performance optoelectronic synaptic platform, marking a pivotal stride towards the realization of advanced neuromorphic computing systems.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.06.058\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.06.058","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optically and electrically modulated artificial synapses based on MoS2/PZT ferroelectric field-effect transistor for neuromorphic computing system
To present an advanced device scheme of high-performance optoelectronic synapses, herein, we demonstrated the electrically- and/or optically-drivable multifaceted synaptic capabilities on the 2D semiconductor channel-based ferroelectric field-effect transistor (FeFET) architecture. The device was fabricated in the form of the MoS2/PZT FeFET, and its synaptic weights were effectively controlled by dual stimuli (i.e., both electrical and optical pulses simultaneously) as well as single stimuli (i.e., either electrical or optical pulses alone). This could be attributed to the electrical pulse-tunable strong ferroelectric polarization in PbZrxTi1−xO3 (PZT) as well as the polarization field-enhanced persistent photoconductivity effect in MoS2. Additionally, it was confirmed that the proposed device possesses substantial activity, achieving approximately 95% pattern recognition accuracy. The results substantiate the great potential of the 2D semiconductor channel-based FeFET device as a high-performance optoelectronic synaptic platform, marking a pivotal stride towards the realization of advanced neuromorphic computing systems.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.