开发用于异相电-芬顿系统的锌掺杂铁-钯双功能网状催化剂

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-08-30 DOI:10.1002/aic.18604
Wenwen Zhang, Wenbin Xie, Tianen Ma, Qi Zhang
{"title":"开发用于异相电-芬顿系统的锌掺杂铁-钯双功能网状催化剂","authors":"Wenwen Zhang, Wenbin Xie, Tianen Ma, Qi Zhang","doi":"10.1002/aic.18604","DOIUrl":null,"url":null,"abstract":"The Fe‐Pd bifunctional heterogeneous electro‐Fenton catalyst is an attractive option for the degradation of phenol wastewater. However, the catalyst faces issues such as inadequate yield of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> on the Pd species and poor durability. In this study, we developed a bifunctional Fe‐Pd catalyst with Zn embedded into a mesh‐type γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Al support (Zn<jats:sub><jats:italic>x</jats:italic></jats:sub>FePd/γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Al). The characterization results indicate that the addition of Zn can improve the dispersion of the Pd component on the catalyst surface and promote the crystallization of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>. Density functional theory calculations reveal that Zn doping reduces the activation energy of the rate‐controlled step and promotes the desorption of products and intermediates in H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> synthesis. The reaction kinetics model was proposed. Furtherly, a possible reaction mechanism was proposed to explain the phenol degradation pathways. The selected Zn<jats:sub>1.4</jats:sub>FePd/γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Al catalyst achieved a degradation rate of 98.8% for phenol. The degradation rate remained above 85% after seven cycles.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"6 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Zn doping Fe‐Pd bifunctional mesh‐type catalyst for heterogeneous electro‐Fenton system\",\"authors\":\"Wenwen Zhang, Wenbin Xie, Tianen Ma, Qi Zhang\",\"doi\":\"10.1002/aic.18604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fe‐Pd bifunctional heterogeneous electro‐Fenton catalyst is an attractive option for the degradation of phenol wastewater. However, the catalyst faces issues such as inadequate yield of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> on the Pd species and poor durability. In this study, we developed a bifunctional Fe‐Pd catalyst with Zn embedded into a mesh‐type γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Al support (Zn<jats:sub><jats:italic>x</jats:italic></jats:sub>FePd/γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Al). The characterization results indicate that the addition of Zn can improve the dispersion of the Pd component on the catalyst surface and promote the crystallization of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>. Density functional theory calculations reveal that Zn doping reduces the activation energy of the rate‐controlled step and promotes the desorption of products and intermediates in H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> synthesis. The reaction kinetics model was proposed. Furtherly, a possible reaction mechanism was proposed to explain the phenol degradation pathways. The selected Zn<jats:sub>1.4</jats:sub>FePd/γ‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Al catalyst achieved a degradation rate of 98.8% for phenol. The degradation rate remained above 85% after seven cycles.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18604\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

铁-钯双功能异相电-芬顿催化剂是降解苯酚废水的一种极具吸引力的选择。然而,该催化剂面临着 Pd 物种上 H2O2 产率不足和耐久性差等问题。在本研究中,我们开发了一种在网状 γ-Al2O3/Al 载体(ZnxFePd/γ-Al2O3/Al)中嵌入 Zn 的双功能 Fe-Pd 催化剂。表征结果表明,添加 Zn 可以改善 Pd 成分在催化剂表面的分散,并促进 Fe3O4 的结晶。密度泛函理论计算表明,Zn 掺杂降低了速率控制步骤的活化能,促进了 H2O2 合成过程中产物和中间产物的解吸。提出了反应动力学模型。此外,还提出了解释苯酚降解途径的可能反应机制。所选的 Zn1.4FePd/γ-Al2O3/Al 催化剂对苯酚的降解率达到 98.8%。七个循环后,降解率仍保持在 85% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Zn doping Fe‐Pd bifunctional mesh‐type catalyst for heterogeneous electro‐Fenton system
The Fe‐Pd bifunctional heterogeneous electro‐Fenton catalyst is an attractive option for the degradation of phenol wastewater. However, the catalyst faces issues such as inadequate yield of H2O2 on the Pd species and poor durability. In this study, we developed a bifunctional Fe‐Pd catalyst with Zn embedded into a mesh‐type γ‐Al2O3/Al support (ZnxFePd/γ‐Al2O3/Al). The characterization results indicate that the addition of Zn can improve the dispersion of the Pd component on the catalyst surface and promote the crystallization of Fe3O4. Density functional theory calculations reveal that Zn doping reduces the activation energy of the rate‐controlled step and promotes the desorption of products and intermediates in H2O2 synthesis. The reaction kinetics model was proposed. Furtherly, a possible reaction mechanism was proposed to explain the phenol degradation pathways. The selected Zn1.4FePd/γ‐Al2O3/Al catalyst achieved a degradation rate of 98.8% for phenol. The degradation rate remained above 85% after seven cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Stabilization of cuσ+ via strong Cu-O-Si interface for efficient electrocatalytic acetylene semi-hydrogenation Simultaneous optimization of simulated moving bed adsorption and distillation for 2,3-butanediol recovery A highly integrated ceramic membrane-based reactor for intensifying the biomass gasification to clean syngas Boosting electrocatalytic alcohol oxidation: Efficient d–π interaction with modified TEMPO and bioinspired structure Doping Si/O to enhance interfacial occupancy of demulsifiers for low-carbon breaking of water-in-heavy oil emulsions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1