João V Calazans Neto, Cícero A S Celles, Catia S A F de Andrade, Conrado R M Afonso, Bruna E Nagay, Valentim A R Barão
{"title":"用于牙科植入物的 β 型钛合金的最新进展和前景。","authors":"João V Calazans Neto, Cícero A S Celles, Catia S A F de Andrade, Conrado R M Afonso, Bruna E Nagay, Valentim A R Barão","doi":"10.1021/acsbiomaterials.4c00963","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium and its alloys, especially Ti-6Al-4V, are widely studied in implantology for their favorable characteristics. However, challenges remain, such as the high modulus of elasticity and concerns about cytotoxicity. To resolve these issues, research focuses on β-type titanium alloys that incorporate elements such as Mo, Nb, Sn, and Ta to improve corrosion resistance and obtain a lower modulus of elasticity compatible with bone. This review comprehensively examines current β titanium alloys, evaluating their mechanical properties, in particular the modulus of elasticity, and corrosion resistance. To this end, a systematic literature search was carried out, where 81 articles were found to evaluate these outcomes. In addition, this review also covers the formation of the alloy, processing methods such as arc melting, and its physical, mechanical, electrochemical, tribological, and biological characteristics. Because β-Ti alloys have a modulus of elasticity closer to that of human bone compared to other metal alloys, they help reduce stress shielding. This is important because the alloy allows for a more even distribution of forces by having a modulus of elasticity more similar to that of bone. In addition, these alloys show good corrosion resistance due to the formation of a noble titanium oxide layer, facilitated by the incorporation of β stabilizers. These alloys also show significant improvements in mechanical strength and hardness. Finally, they also have lower cytotoxicity and bacterial adhesion, depending on the β stabilizer used. However, there are persistent challenges that require detailed research in critical areas, such as optimizing the composition of the alloy to achieve optimal properties in different clinical applications. In addition, it is crucial to study the long-term effects of implants on the human body and to advance the development of cutting-edge manufacturing techniques to guarantee the quality and biocompatibility of implants.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480944/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recent Advances and Prospects in β-type Titanium Alloys for Dental Implants Applications.\",\"authors\":\"João V Calazans Neto, Cícero A S Celles, Catia S A F de Andrade, Conrado R M Afonso, Bruna E Nagay, Valentim A R Barão\",\"doi\":\"10.1021/acsbiomaterials.4c00963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Titanium and its alloys, especially Ti-6Al-4V, are widely studied in implantology for their favorable characteristics. However, challenges remain, such as the high modulus of elasticity and concerns about cytotoxicity. To resolve these issues, research focuses on β-type titanium alloys that incorporate elements such as Mo, Nb, Sn, and Ta to improve corrosion resistance and obtain a lower modulus of elasticity compatible with bone. This review comprehensively examines current β titanium alloys, evaluating their mechanical properties, in particular the modulus of elasticity, and corrosion resistance. To this end, a systematic literature search was carried out, where 81 articles were found to evaluate these outcomes. In addition, this review also covers the formation of the alloy, processing methods such as arc melting, and its physical, mechanical, electrochemical, tribological, and biological characteristics. Because β-Ti alloys have a modulus of elasticity closer to that of human bone compared to other metal alloys, they help reduce stress shielding. This is important because the alloy allows for a more even distribution of forces by having a modulus of elasticity more similar to that of bone. In addition, these alloys show good corrosion resistance due to the formation of a noble titanium oxide layer, facilitated by the incorporation of β stabilizers. These alloys also show significant improvements in mechanical strength and hardness. Finally, they also have lower cytotoxicity and bacterial adhesion, depending on the β stabilizer used. However, there are persistent challenges that require detailed research in critical areas, such as optimizing the composition of the alloy to achieve optimal properties in different clinical applications. In addition, it is crucial to study the long-term effects of implants on the human body and to advance the development of cutting-edge manufacturing techniques to guarantee the quality and biocompatibility of implants.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480944/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00963\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00963","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Recent Advances and Prospects in β-type Titanium Alloys for Dental Implants Applications.
Titanium and its alloys, especially Ti-6Al-4V, are widely studied in implantology for their favorable characteristics. However, challenges remain, such as the high modulus of elasticity and concerns about cytotoxicity. To resolve these issues, research focuses on β-type titanium alloys that incorporate elements such as Mo, Nb, Sn, and Ta to improve corrosion resistance and obtain a lower modulus of elasticity compatible with bone. This review comprehensively examines current β titanium alloys, evaluating their mechanical properties, in particular the modulus of elasticity, and corrosion resistance. To this end, a systematic literature search was carried out, where 81 articles were found to evaluate these outcomes. In addition, this review also covers the formation of the alloy, processing methods such as arc melting, and its physical, mechanical, electrochemical, tribological, and biological characteristics. Because β-Ti alloys have a modulus of elasticity closer to that of human bone compared to other metal alloys, they help reduce stress shielding. This is important because the alloy allows for a more even distribution of forces by having a modulus of elasticity more similar to that of bone. In addition, these alloys show good corrosion resistance due to the formation of a noble titanium oxide layer, facilitated by the incorporation of β stabilizers. These alloys also show significant improvements in mechanical strength and hardness. Finally, they also have lower cytotoxicity and bacterial adhesion, depending on the β stabilizer used. However, there are persistent challenges that require detailed research in critical areas, such as optimizing the composition of the alloy to achieve optimal properties in different clinical applications. In addition, it is crucial to study the long-term effects of implants on the human body and to advance the development of cutting-edge manufacturing techniques to guarantee the quality and biocompatibility of implants.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture