基于结构调整和钠补偿策略的钠隧道氧化物阴极复兴,迈向实用的钠离子圆柱电池

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-09-02 DOI:10.1002/adma.202407994
Hanxiao Liu, Lingyi Kong, Hongrui Wang, Jiayang Li, Jingqiang Wang, Yanfang Zhu, Hongwei Li, Zhuangchun Jian, Xinbei Jia, Yu Su, Shilin Zhang, Jianfeng Mao, Shuangqiang Chen, Yang Liu, Shulei Chou, Yao Xiao
{"title":"基于结构调整和钠补偿策略的钠隧道氧化物阴极复兴,迈向实用的钠离子圆柱电池","authors":"Hanxiao Liu, Lingyi Kong, Hongrui Wang, Jiayang Li, Jingqiang Wang, Yanfang Zhu, Hongwei Li, Zhuangchun Jian, Xinbei Jia, Yu Su, Shilin Zhang, Jianfeng Mao, Shuangqiang Chen, Yang Liu, Shulei Chou, Yao Xiao","doi":"10.1002/adma.202407994","DOIUrl":null,"url":null,"abstract":"<p><p>As a typical tunnel oxide, Na<sub>0.44</sub>MnO<sub>2</sub> features excellent electrochemical performance and outstanding structural stability, making it a promising cathode for sodium-ion batteries (SIBs). However, it suffers from undesirable challenges such as surface residual alkali, multiple voltage plateaus, and low initial charge specific capacity. Herein, an internal and external synergistic modulation strategy is adopted by replacing part of the Mn with Ti to optimize the bulk phase and construct a Ti-containing epitaxial stabilization layer, resulting in reduced surface residual alkali, excellent Na<sup>+</sup> transport kinetics and improved water/air stability. Specifically, the Na<sub>0.44</sub>Mn<sub>0.85</sub>Ti<sub>0.15</sub>O<sub>2</sub> using water-soluble carboxymethyl cellulose as a binder can realize a capacity retention rate of 94.30% after 1,000 cycles at 2C, and excellent stability is further verified in kilogram large-up applications. In addition, taking advantage of the rich Na content in Prussian blue analog (PBA), PBA-Na<sub>0.44</sub>Mn<sub>1-x</sub>Ti<sub>x</sub>O<sub>2</sub> composites are designed to compensate for the insufficient Na in the tunnel oxide and are matched with hard carbon to achieve the preparation of coin full cell and 18650 cylindrical battery with satisfactory electrochemical performance. This work enables the application of tunnel oxides cathode for SIBs in 18650 cylindrical batteries for the first time and promotes the commercialization of SIBs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reviving Sodium Tunnel Oxide Cathodes Based on Structural Modulation and Sodium Compensation Strategy Toward Practical Sodium-Ion Cylindrical Battery.\",\"authors\":\"Hanxiao Liu, Lingyi Kong, Hongrui Wang, Jiayang Li, Jingqiang Wang, Yanfang Zhu, Hongwei Li, Zhuangchun Jian, Xinbei Jia, Yu Su, Shilin Zhang, Jianfeng Mao, Shuangqiang Chen, Yang Liu, Shulei Chou, Yao Xiao\",\"doi\":\"10.1002/adma.202407994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a typical tunnel oxide, Na<sub>0.44</sub>MnO<sub>2</sub> features excellent electrochemical performance and outstanding structural stability, making it a promising cathode for sodium-ion batteries (SIBs). However, it suffers from undesirable challenges such as surface residual alkali, multiple voltage plateaus, and low initial charge specific capacity. Herein, an internal and external synergistic modulation strategy is adopted by replacing part of the Mn with Ti to optimize the bulk phase and construct a Ti-containing epitaxial stabilization layer, resulting in reduced surface residual alkali, excellent Na<sup>+</sup> transport kinetics and improved water/air stability. Specifically, the Na<sub>0.44</sub>Mn<sub>0.85</sub>Ti<sub>0.15</sub>O<sub>2</sub> using water-soluble carboxymethyl cellulose as a binder can realize a capacity retention rate of 94.30% after 1,000 cycles at 2C, and excellent stability is further verified in kilogram large-up applications. In addition, taking advantage of the rich Na content in Prussian blue analog (PBA), PBA-Na<sub>0.44</sub>Mn<sub>1-x</sub>Ti<sub>x</sub>O<sub>2</sub> composites are designed to compensate for the insufficient Na in the tunnel oxide and are matched with hard carbon to achieve the preparation of coin full cell and 18650 cylindrical battery with satisfactory electrochemical performance. This work enables the application of tunnel oxides cathode for SIBs in 18650 cylindrical batteries for the first time and promotes the commercialization of SIBs.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202407994\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202407994","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种典型的隧道氧化物,Na0.44MnO2 具有优异的电化学性能和出色的结构稳定性,使其成为钠离子电池(SIB)的一种前景广阔的阴极。然而,它也面临着一些不理想的挑战,如表面残碱、多重电压高原和初始充电比容量低等。本文采用内外协同调制策略,用钛取代部分锰,优化体相并构建含钛的外延稳定层,从而降低了表面残碱,实现了出色的 Na+ 传输动力学,并提高了水/空气稳定性。具体而言,以水溶性羧甲基纤维素为粘合剂的 Na0.44Mn0.85Ti0.15O2 在 2C 下循环 1000 次后,容量保持率可达 94.30%,其出色的稳定性在公斤级大容量应用中得到了进一步验证。此外,利用普鲁士蓝类似物(PBA)中丰富的 Na 含量,设计了 PBA-Na0.44Mn1-xTixO2 复合材料来弥补隧道氧化物中 Na 的不足,并与硬碳(hard carbon)相匹配,从而制备出电化学性能令人满意的纽扣全电池和 18650 圆柱电池。这项工作首次实现了隧道氧化物正极在 18650 圆柱形电池中的应用,促进了 SIB 的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reviving Sodium Tunnel Oxide Cathodes Based on Structural Modulation and Sodium Compensation Strategy Toward Practical Sodium-Ion Cylindrical Battery.

As a typical tunnel oxide, Na0.44MnO2 features excellent electrochemical performance and outstanding structural stability, making it a promising cathode for sodium-ion batteries (SIBs). However, it suffers from undesirable challenges such as surface residual alkali, multiple voltage plateaus, and low initial charge specific capacity. Herein, an internal and external synergistic modulation strategy is adopted by replacing part of the Mn with Ti to optimize the bulk phase and construct a Ti-containing epitaxial stabilization layer, resulting in reduced surface residual alkali, excellent Na+ transport kinetics and improved water/air stability. Specifically, the Na0.44Mn0.85Ti0.15O2 using water-soluble carboxymethyl cellulose as a binder can realize a capacity retention rate of 94.30% after 1,000 cycles at 2C, and excellent stability is further verified in kilogram large-up applications. In addition, taking advantage of the rich Na content in Prussian blue analog (PBA), PBA-Na0.44Mn1-xTixO2 composites are designed to compensate for the insufficient Na in the tunnel oxide and are matched with hard carbon to achieve the preparation of coin full cell and 18650 cylindrical battery with satisfactory electrochemical performance. This work enables the application of tunnel oxides cathode for SIBs in 18650 cylindrical batteries for the first time and promotes the commercialization of SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts Unveiling the In Situ Evolution of Li2O-Rich Solid Electrolyte Interface on CoOx Embedded Carbon Fibers as Li Anode Host Mass Production of Multishell Hollow SiO2 Spheres With Adjustable Void Ratios and Pore Structures Visible-Near Infrared Independent Modulation of Hexagonal WO3 Induced by Ionic Insertion Sequence and Cavity Characteristics Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1