{"title":"原子-三原子系统的全维耦合通道统计方法及其在 H/D + O3 反应中的应用。","authors":"Dongzheng Yang, Hua Guo","doi":"10.1002/jcc.27500","DOIUrl":null,"url":null,"abstract":"<p>The statistical quantum model (SQM), which assumes that the reactivity is controlled by entrance/exit channel quantum capture probabilities, is well suited for chemical reactions with a long-lived intermediate complex. In this work, a time-independent coupled-channel implementation of the SQM approach is developed for atom-triatom systems in full dimensionality. As SQM treats the capture dynamics quantum mechanically, it is capable of handling quantum effects such as tunneling. A detailed study of the H/D + O<sub>3</sub> capture dynamics was performed by applying the newly developed SQM method on an accurate global potential energy surface. Agreement with previous ring polymer molecular dynamics (RPMD) results on the same potential energy surface is excellent except for very low temperatures. The SQM results are also in reasonably good agreement with available experimental rate coefficients. The strong H/D kinetic isotope effect underscores the dominant role of quantum tunneling under an entrance channel barrier at low temperatures.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 32","pages":"2941-2948"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-dimensional coupled-channel statistical approach to atom-triatom systems and applications to H/D + O3 reaction\",\"authors\":\"Dongzheng Yang, Hua Guo\",\"doi\":\"10.1002/jcc.27500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The statistical quantum model (SQM), which assumes that the reactivity is controlled by entrance/exit channel quantum capture probabilities, is well suited for chemical reactions with a long-lived intermediate complex. In this work, a time-independent coupled-channel implementation of the SQM approach is developed for atom-triatom systems in full dimensionality. As SQM treats the capture dynamics quantum mechanically, it is capable of handling quantum effects such as tunneling. A detailed study of the H/D + O<sub>3</sub> capture dynamics was performed by applying the newly developed SQM method on an accurate global potential energy surface. Agreement with previous ring polymer molecular dynamics (RPMD) results on the same potential energy surface is excellent except for very low temperatures. The SQM results are also in reasonably good agreement with available experimental rate coefficients. The strong H/D kinetic isotope effect underscores the dominant role of quantum tunneling under an entrance channel barrier at low temperatures.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"45 32\",\"pages\":\"2941-2948\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27500\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27500","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Full-dimensional coupled-channel statistical approach to atom-triatom systems and applications to H/D + O3 reaction
The statistical quantum model (SQM), which assumes that the reactivity is controlled by entrance/exit channel quantum capture probabilities, is well suited for chemical reactions with a long-lived intermediate complex. In this work, a time-independent coupled-channel implementation of the SQM approach is developed for atom-triatom systems in full dimensionality. As SQM treats the capture dynamics quantum mechanically, it is capable of handling quantum effects such as tunneling. A detailed study of the H/D + O3 capture dynamics was performed by applying the newly developed SQM method on an accurate global potential energy surface. Agreement with previous ring polymer molecular dynamics (RPMD) results on the same potential energy surface is excellent except for very low temperatures. The SQM results are also in reasonably good agreement with available experimental rate coefficients. The strong H/D kinetic isotope effect underscores the dominant role of quantum tunneling under an entrance channel barrier at low temperatures.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.