{"title":"预测自身免疫性疾病:经典生物标志物和人工智能进展的全面回顾。","authors":"","doi":"10.1016/j.autrev.2024.103611","DOIUrl":null,"url":null,"abstract":"<div><p>Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.</p></div>","PeriodicalId":8664,"journal":{"name":"Autoimmunity reviews","volume":null,"pages":null},"PeriodicalIF":9.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1568997224001022/pdfft?md5=b8dc83300cca0ee774da448c9783ff78&pid=1-s2.0-S1568997224001022-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence\",\"authors\":\"\",\"doi\":\"10.1016/j.autrev.2024.103611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.</p></div>\",\"PeriodicalId\":8664,\"journal\":{\"name\":\"Autoimmunity reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1568997224001022/pdfft?md5=b8dc83300cca0ee774da448c9783ff78&pid=1-s2.0-S1568997224001022-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoimmunity reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568997224001022\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568997224001022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence
Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.
期刊介绍:
Autoimmunity Reviews is a publication that features up-to-date, structured reviews on various topics in the field of autoimmunity. These reviews are written by renowned experts and include demonstrative illustrations and tables. Each article will have a clear "take-home" message for readers.
The selection of articles is primarily done by the Editors-in-Chief, based on recommendations from the international Editorial Board. The topics covered in the articles span all areas of autoimmunology, aiming to bridge the gap between basic and clinical sciences.
In terms of content, the contributions in basic sciences delve into the pathophysiology and mechanisms of autoimmune disorders, as well as genomics and proteomics. On the other hand, clinical contributions focus on diseases related to autoimmunity, novel therapies, and clinical associations.
Autoimmunity Reviews is internationally recognized, and its articles are indexed and abstracted in prestigious databases such as PubMed/Medline, Science Citation Index Expanded, Biosciences Information Services, and Chemical Abstracts.