K Gourgoura, P Rivadeneyra, E Stanghellini, C Caroni, F Bartolucci, R Curcio, S Bartoli, R Ferranti, I Folletti, M Cavallo, L Sanesi, I Dominioni, E Santoni, G Morgana, M B Pasticci, G Pucci, G Vaudo
{"title":"利用图形链模型模拟 COVID-19 对健康的长期影响 简标题: 利用图形链模型预测 COVID 的长期影响。","authors":"K Gourgoura, P Rivadeneyra, E Stanghellini, C Caroni, F Bartolucci, R Curcio, S Bartoli, R Ferranti, I Folletti, M Cavallo, L Sanesi, I Dominioni, E Santoni, G Morgana, M B Pasticci, G Pucci, G Vaudo","doi":"10.1186/s12879-024-09777-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-term sequelae of SARS-CoV-2 infection, namely long COVID syndrome, affect about 10% of severe COVID-19 survivors. This condition includes several physical symptoms and objective measures of organ dysfunction resulting from a complex interaction between individual predisposing factors and the acute manifestation of disease. We aimed at describing the complexity of the relationship between long COVID symptoms and their predictors in a population of survivors of hospitalization for severe COVID-19-related pneumonia using a Graphical Chain Model (GCM).</p><p><strong>Methods: </strong>96 patients with severe COVID-19 hospitalized in a non-intensive ward at the \"Santa Maria\" University Hospital, Terni, Italy, were followed up at 3-6 months. Data regarding present and previous clinical status, drug treatment, findings recorded during the in-hospital phase, presence of symptoms and signs of organ damage at follow-up were collected. Static and dynamic cardiac and respiratory parameters were evaluated by resting pulmonary function test, echocardiography, high-resolution chest tomography (HRCT) and cardiopulmonary exercise testing (CPET).</p><p><strong>Results: </strong>Twelve clinically most relevant factors were identified and partitioned into four ordered blocks in the GCM: block 1 - gender, smoking, age and body mass index (BMI); block 2 - admission to the intensive care unit (ICU) and length of follow-up in days; block 3 - peak oxygen consumption (VO<sub>2</sub>), forced expiratory volume at first second (FEV<sub>1</sub>), D-dimer levels, depression score and presence of fatigue; block 4 - HRCT pathological findings. Higher BMI and smoking had a significant impact on the probability of a patient's admission to ICU. VO<sub>2</sub> showed dependency on length of follow-up. FEV<sub>1</sub> was related to the self-assessed indicator of fatigue, and, in turn, fatigue was significantly associated with the depression score. Notably, neither fatigue nor depression depended on variables in block 2, including length of follow-up.</p><p><strong>Conclusions: </strong>The biological plausibility of the relationships between variables demonstrated by the GCM validates the efficacy of this approach as a valuable statistical tool for elucidating structural features, such as conditional dependencies and associations. This promising method holds potential for exploring the long-term health repercussions of COVID-19 by identifying predictive factors and establishing suitable therapeutic strategies.</p>","PeriodicalId":8981,"journal":{"name":"BMC Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360819/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling the long-term health impact of COVID-19 using Graphical Chain Models brief heading: long COVID prediction by graphical chain models.\",\"authors\":\"K Gourgoura, P Rivadeneyra, E Stanghellini, C Caroni, F Bartolucci, R Curcio, S Bartoli, R Ferranti, I Folletti, M Cavallo, L Sanesi, I Dominioni, E Santoni, G Morgana, M B Pasticci, G Pucci, G Vaudo\",\"doi\":\"10.1186/s12879-024-09777-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Long-term sequelae of SARS-CoV-2 infection, namely long COVID syndrome, affect about 10% of severe COVID-19 survivors. This condition includes several physical symptoms and objective measures of organ dysfunction resulting from a complex interaction between individual predisposing factors and the acute manifestation of disease. We aimed at describing the complexity of the relationship between long COVID symptoms and their predictors in a population of survivors of hospitalization for severe COVID-19-related pneumonia using a Graphical Chain Model (GCM).</p><p><strong>Methods: </strong>96 patients with severe COVID-19 hospitalized in a non-intensive ward at the \\\"Santa Maria\\\" University Hospital, Terni, Italy, were followed up at 3-6 months. Data regarding present and previous clinical status, drug treatment, findings recorded during the in-hospital phase, presence of symptoms and signs of organ damage at follow-up were collected. Static and dynamic cardiac and respiratory parameters were evaluated by resting pulmonary function test, echocardiography, high-resolution chest tomography (HRCT) and cardiopulmonary exercise testing (CPET).</p><p><strong>Results: </strong>Twelve clinically most relevant factors were identified and partitioned into four ordered blocks in the GCM: block 1 - gender, smoking, age and body mass index (BMI); block 2 - admission to the intensive care unit (ICU) and length of follow-up in days; block 3 - peak oxygen consumption (VO<sub>2</sub>), forced expiratory volume at first second (FEV<sub>1</sub>), D-dimer levels, depression score and presence of fatigue; block 4 - HRCT pathological findings. Higher BMI and smoking had a significant impact on the probability of a patient's admission to ICU. VO<sub>2</sub> showed dependency on length of follow-up. FEV<sub>1</sub> was related to the self-assessed indicator of fatigue, and, in turn, fatigue was significantly associated with the depression score. Notably, neither fatigue nor depression depended on variables in block 2, including length of follow-up.</p><p><strong>Conclusions: </strong>The biological plausibility of the relationships between variables demonstrated by the GCM validates the efficacy of this approach as a valuable statistical tool for elucidating structural features, such as conditional dependencies and associations. This promising method holds potential for exploring the long-term health repercussions of COVID-19 by identifying predictive factors and establishing suitable therapeutic strategies.</p>\",\"PeriodicalId\":8981,\"journal\":{\"name\":\"BMC Infectious Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360819/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12879-024-09777-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12879-024-09777-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Modelling the long-term health impact of COVID-19 using Graphical Chain Models brief heading: long COVID prediction by graphical chain models.
Background: Long-term sequelae of SARS-CoV-2 infection, namely long COVID syndrome, affect about 10% of severe COVID-19 survivors. This condition includes several physical symptoms and objective measures of organ dysfunction resulting from a complex interaction between individual predisposing factors and the acute manifestation of disease. We aimed at describing the complexity of the relationship between long COVID symptoms and their predictors in a population of survivors of hospitalization for severe COVID-19-related pneumonia using a Graphical Chain Model (GCM).
Methods: 96 patients with severe COVID-19 hospitalized in a non-intensive ward at the "Santa Maria" University Hospital, Terni, Italy, were followed up at 3-6 months. Data regarding present and previous clinical status, drug treatment, findings recorded during the in-hospital phase, presence of symptoms and signs of organ damage at follow-up were collected. Static and dynamic cardiac and respiratory parameters were evaluated by resting pulmonary function test, echocardiography, high-resolution chest tomography (HRCT) and cardiopulmonary exercise testing (CPET).
Results: Twelve clinically most relevant factors were identified and partitioned into four ordered blocks in the GCM: block 1 - gender, smoking, age and body mass index (BMI); block 2 - admission to the intensive care unit (ICU) and length of follow-up in days; block 3 - peak oxygen consumption (VO2), forced expiratory volume at first second (FEV1), D-dimer levels, depression score and presence of fatigue; block 4 - HRCT pathological findings. Higher BMI and smoking had a significant impact on the probability of a patient's admission to ICU. VO2 showed dependency on length of follow-up. FEV1 was related to the self-assessed indicator of fatigue, and, in turn, fatigue was significantly associated with the depression score. Notably, neither fatigue nor depression depended on variables in block 2, including length of follow-up.
Conclusions: The biological plausibility of the relationships between variables demonstrated by the GCM validates the efficacy of this approach as a valuable statistical tool for elucidating structural features, such as conditional dependencies and associations. This promising method holds potential for exploring the long-term health repercussions of COVID-19 by identifying predictive factors and establishing suitable therapeutic strategies.
期刊介绍:
BMC Infectious Diseases is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of infectious and sexually transmitted diseases in humans, as well as related molecular genetics, pathophysiology, and epidemiology.