混合重金属暴露与动脉僵化之间的关系,碱性磷酸酶被确定为中介因子

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biological Trace Element Research Pub Date : 2024-09-02 DOI:10.1007/s12011-024-04359-2
Pingan Li, Jianhua Ma, Yue Jiang, Xinghua Yang, Yanxia Luo, Lixin Tao, Xiuhua Guo, Bo Gao
{"title":"混合重金属暴露与动脉僵化之间的关系,碱性磷酸酶被确定为中介因子","authors":"Pingan Li, Jianhua Ma, Yue Jiang, Xinghua Yang, Yanxia Luo, Lixin Tao, Xiuhua Guo, Bo Gao","doi":"10.1007/s12011-024-04359-2","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association between Mixed Heavy Metal Exposure and Arterial Stiffness, with Alkaline Phosphatase Identified as a Mediator.\",\"authors\":\"Pingan Li, Jianhua Ma, Yue Jiang, Xinghua Yang, Yanxia Luo, Lixin Tao, Xiuhua Guo, Bo Gao\",\"doi\":\"10.1007/s12011-024-04359-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04359-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04359-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动脉僵硬度升高与接触铅(Pb)和镉(Cd)等重金属有关。然而,多种金属的综合影响及其内在机制尚未完全阐明。本研究的目的是评估暴露于九种重金属对动脉僵化的综合影响,并探讨血清碱性磷酸酶(ALP)在这一关系中是否起中介作用。在回顾性分析中,从1999年至2018年的美国国家健康与营养调查(NHANES)中检索了8700名参与者的数据。动脉僵化通过估计脉搏波速度(ePWV)进行测量。采用自适应弹性网、环境风险评分、加权量子总和回归和量子 g 计算方法对多种金属暴露的累积影响进行了研究。此外,还进行了中介分析,以探讨血清 ALP 的潜在中介作用。我们发现,多种金属的综合暴露始终与 ePWV 升高相关,其中钡、铅和锑的影响最大。值得注意的是,血清 ALP 可部分调节个体(铅、锑)和混合金属暴露与 ePWV 之间的关系,铅的调节比例为 10.76%,锑的调节比例为 18.22%,混合金属暴露的调节比例为 11.07%。总之,这项研究表明,单独或混合接触重金属与动脉僵化之间存在明显的关联。此外,研究结果表明,血清 ALP 活性可能是这些关系的中介。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Association between Mixed Heavy Metal Exposure and Arterial Stiffness, with Alkaline Phosphatase Identified as a Mediator.

Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
期刊最新文献
Correction: Cobalt Uptake by Food Plants and Accumulation in Municipal Solid Waste Materials Compost-amended Soil: Public Health Implications. Disrupting Development: Unraveling the Interplay of Aryl Hydrocarbon Receptor (AHR) and Wnt/β-Catenin Pathways in Kidney Development Under the Influence of Environmental Pollutants. Assessing Trace Metal-Based Human Health Risks for Commonly Used Body Soaps in Bangladesh. Assessment of Heavy Metals in Biscuit Samples Available in Iraqi Markets. Association Between Copper Intake and Migraine: a National Cross-sectional Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1