{"title":"鞭毛游动细胞多细胞群的统计流动性","authors":"Yonatan Ashenafi, Peter R Kramer","doi":"10.1007/s11538-024-01351-8","DOIUrl":null,"url":null,"abstract":"<p><p>We study the stochastic hydrodynamics of colonies of flagellated swimming cells, typified by multicellular choanoflagellates, which can form both rosette and chainlike shapes. The objective is to link cell-scale dynamics to colony-scale dynamics for various colonial morphologies. Via autoregressive stochastic models for the cycle-averaged flagellar force dynamics and statistical models for demographic cell-to-cell variability in flagellar properties and placement, we derive effective transport properties of the colonies, including cell-to-cell variability. We provide the most quantitative detail on disclike geometries to model rosettes, but also present formulas for the dynamics of general planar colony morphologies, which includes planar chain-like configurations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Mobility of Multicellular Colonies of Flagellated Swimming Cells.\",\"authors\":\"Yonatan Ashenafi, Peter R Kramer\",\"doi\":\"10.1007/s11538-024-01351-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the stochastic hydrodynamics of colonies of flagellated swimming cells, typified by multicellular choanoflagellates, which can form both rosette and chainlike shapes. The objective is to link cell-scale dynamics to colony-scale dynamics for various colonial morphologies. Via autoregressive stochastic models for the cycle-averaged flagellar force dynamics and statistical models for demographic cell-to-cell variability in flagellar properties and placement, we derive effective transport properties of the colonies, including cell-to-cell variability. We provide the most quantitative detail on disclike geometries to model rosettes, but also present formulas for the dynamics of general planar colony morphologies, which includes planar chain-like configurations.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01351-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01351-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Statistical Mobility of Multicellular Colonies of Flagellated Swimming Cells.
We study the stochastic hydrodynamics of colonies of flagellated swimming cells, typified by multicellular choanoflagellates, which can form both rosette and chainlike shapes. The objective is to link cell-scale dynamics to colony-scale dynamics for various colonial morphologies. Via autoregressive stochastic models for the cycle-averaged flagellar force dynamics and statistical models for demographic cell-to-cell variability in flagellar properties and placement, we derive effective transport properties of the colonies, including cell-to-cell variability. We provide the most quantitative detail on disclike geometries to model rosettes, but also present formulas for the dynamics of general planar colony morphologies, which includes planar chain-like configurations.