Na 取代在 Ca1-xNaxTi0.5Ta0.5O3 珍珠岩纳米粒子的磁性相互作用和光催化特性中的相互作用

IF 2.5 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemistryOpen Pub Date : 2024-08-30 DOI:10.1002/open.202400021
S. S. Kammar, V. K. Barote, A. A. Gaikwad, Sagar E. Shirsath, A. A. Ibrahim, K. M. Batoo, R. H. Kadam, S. S. More
{"title":"Na 取代在 Ca1-xNaxTi0.5Ta0.5O3 珍珠岩纳米粒子的磁性相互作用和光催化特性中的相互作用","authors":"S. S. Kammar,&nbsp;V. K. Barote,&nbsp;A. A. Gaikwad,&nbsp;Sagar E. Shirsath,&nbsp;A. A. Ibrahim,&nbsp;K. M. Batoo,&nbsp;R. H. Kadam,&nbsp;S. S. More","doi":"10.1002/open.202400021","DOIUrl":null,"url":null,"abstract":"<p>This research paper delves into the enhancement of wastewater treatment through the design and synthesis of advanced photocatalytic materials, focusing on the effects of sodium (Na) substitution in Ca<sub>1-x</sub>Na<sub>x</sub>Ta<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>3</sub> perovskites. By employing various analytical techniques such as X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and UV-vis spectroscopy, the study examines the transition of these perovskites from tetragonal to orthorhombic structures and observes a reduction in Ca content with Na substitution, which also favors the cubic phase formation and inhibits secondary phases. Significantly, magnetic property analysis uncovers an unexpected ferromagnetic ordering in these perovskites, including compositions traditionally viewed as non-magnetic. The photocatalytic tests reveal a significant improvement in degrading Rhodamine B dye under visible light, particularly in samples with higher Na levels, attributed to enhanced light absorption and efficient electron processes. The study highlights the optimal Na substitution level for peak photocatalytic performance, offering valuable insights into the complex interplay between structural, magnetic, and photocatalytic properties of these perovskites, and their potential in various applications, thereby contributing to the advancement of wastewater treatment technologies.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457761/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interplay of Na Substitution in Magnetic Interaction and Photocatalytic Properties of Ca1-xNaxTi0.5Ta0.5O3 Perovskite Nanoparticles\",\"authors\":\"S. S. Kammar,&nbsp;V. K. Barote,&nbsp;A. A. Gaikwad,&nbsp;Sagar E. Shirsath,&nbsp;A. A. Ibrahim,&nbsp;K. M. Batoo,&nbsp;R. H. Kadam,&nbsp;S. S. More\",\"doi\":\"10.1002/open.202400021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research paper delves into the enhancement of wastewater treatment through the design and synthesis of advanced photocatalytic materials, focusing on the effects of sodium (Na) substitution in Ca<sub>1-x</sub>Na<sub>x</sub>Ta<sub>0.5</sub>Ti<sub>0.5</sub>O<sub>3</sub> perovskites. By employing various analytical techniques such as X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and UV-vis spectroscopy, the study examines the transition of these perovskites from tetragonal to orthorhombic structures and observes a reduction in Ca content with Na substitution, which also favors the cubic phase formation and inhibits secondary phases. Significantly, magnetic property analysis uncovers an unexpected ferromagnetic ordering in these perovskites, including compositions traditionally viewed as non-magnetic. The photocatalytic tests reveal a significant improvement in degrading Rhodamine B dye under visible light, particularly in samples with higher Na levels, attributed to enhanced light absorption and efficient electron processes. The study highlights the optimal Na substitution level for peak photocatalytic performance, offering valuable insights into the complex interplay between structural, magnetic, and photocatalytic properties of these perovskites, and their potential in various applications, thereby contributing to the advancement of wastewater treatment technologies.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457761/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/open.202400021\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202400021","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文通过设计和合成先进的光催化材料,深入探讨了如何提高废水处理能力,重点关注钠(Na)在 Ca1-xNaxTa0.5Ti0.5O3 包晶中的替代效应。通过采用 X 射线衍射、场发射扫描电子显微镜、透射电子显微镜和紫外-可见光谱等各种分析技术,该研究考察了这些包晶石从四方结构向正方结构的转变,并观察到随着 Na 的替代,钙含量降低,这也有利于立方相的形成,并抑制了次生相的形成。值得注意的是,磁性能分析在这些包晶中发现了意想不到的铁磁有序性,包括传统上被视为非磁性的成分。光催化测试表明,在可见光下降解罗丹明 B 染料的效果显著提高,特别是在 Na 含量较高的样品中,这归因于光吸收的增强和电子过程的高效。该研究强调了达到光催化性能峰值的最佳 Na 替代水平,为了解这些过氧化物晶石的结构、磁性和光催化特性之间的复杂相互作用及其在各种应用中的潜力提供了宝贵的见解,从而有助于推动废水处理技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interplay of Na Substitution in Magnetic Interaction and Photocatalytic Properties of Ca1-xNaxTi0.5Ta0.5O3 Perovskite Nanoparticles

This research paper delves into the enhancement of wastewater treatment through the design and synthesis of advanced photocatalytic materials, focusing on the effects of sodium (Na) substitution in Ca1-xNaxTa0.5Ti0.5O3 perovskites. By employing various analytical techniques such as X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and UV-vis spectroscopy, the study examines the transition of these perovskites from tetragonal to orthorhombic structures and observes a reduction in Ca content with Na substitution, which also favors the cubic phase formation and inhibits secondary phases. Significantly, magnetic property analysis uncovers an unexpected ferromagnetic ordering in these perovskites, including compositions traditionally viewed as non-magnetic. The photocatalytic tests reveal a significant improvement in degrading Rhodamine B dye under visible light, particularly in samples with higher Na levels, attributed to enhanced light absorption and efficient electron processes. The study highlights the optimal Na substitution level for peak photocatalytic performance, offering valuable insights into the complex interplay between structural, magnetic, and photocatalytic properties of these perovskites, and their potential in various applications, thereby contributing to the advancement of wastewater treatment technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemistryOpen
ChemistryOpen CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
4.30%
发文量
143
审稿时长
1 months
期刊介绍: ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.
期刊最新文献
Role of Active Site and CO2-Interacting Surface Species in Dry Reforming of Methane over Strontium Promoted Ni Catalyst Supported by Lanthanum-Zirconia. Artificial Spidroin Nanogenerator-Based Articulus Wound Dressing. One-Pot Synthesis and Characterization of Magnetic α-Fe2O3/CuO/CuFe2O4 Nanocomposite for Multifunctional Therapeutic Applications. Protein Quakes in Redox Metalloenzymes: Clues to Molecular Enzyme Conductivity Triggered by Binding of Small Substrate Molecules. Rapid Synthesis of anti-1,3-Diamino-4-phenylbutan-2-ol Building Blocks via a Three-Component Oxyhomologation and a Two-Component Reducing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1