超越氯胺酮:用于治疗抑郁症的新兴谷氨酸能化合物。

IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY European Archives of Psychiatry and Clinical Neuroscience Pub Date : 2024-08-29 DOI:10.1007/s00406-024-01875-z
Florian Freudenberg, Christine Reif-Leonhard, Andreas Reif
{"title":"超越氯胺酮:用于治疗抑郁症的新兴谷氨酸能化合物。","authors":"Florian Freudenberg, Christine Reif-Leonhard, Andreas Reif","doi":"10.1007/s00406-024-01875-z","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antidepressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepressants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.</p>","PeriodicalId":11822,"journal":{"name":"European Archives of Psychiatry and Clinical Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing past ketamine: emerging glutamatergic compounds for the treatment of depression.\",\"authors\":\"Florian Freudenberg, Christine Reif-Leonhard, Andreas Reif\",\"doi\":\"10.1007/s00406-024-01875-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antidepressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepressants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.</p>\",\"PeriodicalId\":11822,\"journal\":{\"name\":\"European Archives of Psychiatry and Clinical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Archives of Psychiatry and Clinical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00406-024-01875-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Psychiatry and Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00406-024-01875-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

谷氨酸能神经可塑性的变化被认为是抑郁症病理生理学的核心机制之一。因此,谷氨酸能突触的组成成分被视为抗抑郁治疗的潜在靶点。NMDA 受体拮抗剂氯胺酮的快速抗抑郁作用及其 S-对映体(即艾司氯胺酮)随后获得批准,开创了研究其他谷氨酸能快速作用抗抑郁药(RAADs)的先例。在这篇综述中,我们讨论了不同谷氨酸能靶点在抗抑郁治疗中的潜力。我们描述了针对谷氨酸能突触成分的几种关键分子的重要临床结果及其作为 RAADs 的适用性。具体来说,我们将重点放在(es)氯胺酮以外的物质上,这些物质已经有了有意义的临床试验数据,包括阿克他敏、艾司美沙酮、氧化亚氮和其他谷氨酸受体调节剂。至于仅在临床前环境和病例报告/系列中取得成功的分子,我们仅作了少量讨论。通过这篇综述,我们旨在强调谷氨酸能调节剂在推进抗抑郁治疗中的关键作用,从而有可能提高临床疗效,并通过更快的治疗效果减轻抑郁症的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing past ketamine: emerging glutamatergic compounds for the treatment of depression.

Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antidepressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepressants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
4.30%
发文量
154
审稿时长
6-12 weeks
期刊介绍: The original papers published in the European Archives of Psychiatry and Clinical Neuroscience deal with all aspects of psychiatry and related clinical neuroscience. Clinical psychiatry, psychopathology, epidemiology as well as brain imaging, neuropathological, neurophysiological, neurochemical and moleculargenetic studies of psychiatric disorders are among the topics covered. Thus both the clinician and the neuroscientist are provided with a handy source of information on important scientific developments.
期刊最新文献
Episodic memory impairment and its influencing factors in individuals with autism spectrum disorder: systematic review and meta-analysis Hemispheric asymmetries in borderline personality disorder: a systematic review Post-COVID syndrome - novel clinical findings. Nightmare frequency and nightmare distress in psychiatric inpatients. The critical role of primary care providers in addressing suicide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1