新分离的平肠球菌 MLG3-25-1 产生的外多糖的功能特征和生物技术应用。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Microbiology Pub Date : 2024-09-02 DOI:10.1007/s10123-024-00587-7
Mst Mamotaz Mohal, Farzana Sayed Sraboni, Shirmin Islam, Shahriar Zaman, Md Salah Uddin, Md Abu Saleh
{"title":"新分离的平肠球菌 MLG3-25-1 产生的外多糖的功能特征和生物技术应用。","authors":"Mst Mamotaz Mohal, Farzana Sayed Sraboni, Shirmin Islam, Shahriar Zaman, Md Salah Uddin, Md Abu Saleh","doi":"10.1007/s10123-024-00587-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the potential applications of Enterococcus hirae MLG3-25-1 exopolysaccharides (EPS), with a focus on their isolation, identification, production, and functional characteristics. After the bacterial strain was cultured in De Man-Rogosa-Sharpe (MRS) medium containing 1% glucose at 37 °C, the EPS was refined, and the highest yield of 0.85 mg/mL was achieved at the 24-h incubation period. Enterococcus hirae MLG3-25-1 was found to be able to produce EPS. The study explored the microstructure of the EPS, which resembles polysaccharide sheets with smooth surfaces, through scanning electron microscope (SEM) analysis. Through Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis, the chemical composition, aligning with glycosidic bond characteristics, has been deciphered. Furthermore, the antimicrobial and antibiofilm activities against pathogenic bacteria, particularly Bacillus sp., demonstrated potential applications in combating antibiotic resistance. The EPS exhibited notable antioxidant activity (89.36% DPPH scavenging), along with high water-holding capacity (575%), emulsifying activity, and flocculation activity, suggesting its potential as a stabilizing agent in the food industry. Overall, this study provides a comprehensive characterization of Enterococcus hirae MLG3-25-1 EPS, emphasizing its diverse applications in antimicrobial, antioxidant, and food-related industries. These findings lay the groundwork for further exploration and utilization of this EPS in various sectors.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional characterization and biotechnological applications of exopolysaccharides produced by newly isolated Enterococcus hirae MLG3-25-1.\",\"authors\":\"Mst Mamotaz Mohal, Farzana Sayed Sraboni, Shirmin Islam, Shahriar Zaman, Md Salah Uddin, Md Abu Saleh\",\"doi\":\"10.1007/s10123-024-00587-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the potential applications of Enterococcus hirae MLG3-25-1 exopolysaccharides (EPS), with a focus on their isolation, identification, production, and functional characteristics. After the bacterial strain was cultured in De Man-Rogosa-Sharpe (MRS) medium containing 1% glucose at 37 °C, the EPS was refined, and the highest yield of 0.85 mg/mL was achieved at the 24-h incubation period. Enterococcus hirae MLG3-25-1 was found to be able to produce EPS. The study explored the microstructure of the EPS, which resembles polysaccharide sheets with smooth surfaces, through scanning electron microscope (SEM) analysis. Through Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis, the chemical composition, aligning with glycosidic bond characteristics, has been deciphered. Furthermore, the antimicrobial and antibiofilm activities against pathogenic bacteria, particularly Bacillus sp., demonstrated potential applications in combating antibiotic resistance. The EPS exhibited notable antioxidant activity (89.36% DPPH scavenging), along with high water-holding capacity (575%), emulsifying activity, and flocculation activity, suggesting its potential as a stabilizing agent in the food industry. Overall, this study provides a comprehensive characterization of Enterococcus hirae MLG3-25-1 EPS, emphasizing its diverse applications in antimicrobial, antioxidant, and food-related industries. These findings lay the groundwork for further exploration and utilization of this EPS in various sectors.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-024-00587-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00587-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了平肠球菌 MLG3-25-1 外多糖(EPS)的潜在应用,重点关注其分离、鉴定、生产和功能特性。细菌菌株在 37 °C、含 1%葡萄糖的 De Man-Rogosa-Sharpe (MRS) 培养基中培养后,EPS 得到提炼,24 小时培养期的最高产量为 0.85 mg/mL。研究发现平肠球菌 MLG3-25-1 能够产生 EPS。研究通过扫描电子显微镜(SEM)分析探讨了 EPS 的微观结构,它类似于表面光滑的多糖片。通过傅立叶变换红外光谱(FT-IR)和核磁共振(NMR)分析,破译了与糖苷键特征一致的化学成分。此外,EPS 对病原菌(尤其是芽孢杆菌)的抗菌和抗生物膜活性也证明了其在对抗抗生素耐药性方面的潜在应用。EPS 具有显著的抗氧化活性(89.36% DPPH 清除率)、高保水能力(575%)、乳化活性和絮凝活性,这表明它具有作为食品工业稳定剂的潜力。总之,本研究全面描述了平肠球菌 MLG3-25-1 EPS 的特性,强调了其在抗菌、抗氧化和食品相关行业的多样化应用。这些发现为进一步探索和利用这种 EPS 在各个领域的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional characterization and biotechnological applications of exopolysaccharides produced by newly isolated Enterococcus hirae MLG3-25-1.

This study investigated the potential applications of Enterococcus hirae MLG3-25-1 exopolysaccharides (EPS), with a focus on their isolation, identification, production, and functional characteristics. After the bacterial strain was cultured in De Man-Rogosa-Sharpe (MRS) medium containing 1% glucose at 37 °C, the EPS was refined, and the highest yield of 0.85 mg/mL was achieved at the 24-h incubation period. Enterococcus hirae MLG3-25-1 was found to be able to produce EPS. The study explored the microstructure of the EPS, which resembles polysaccharide sheets with smooth surfaces, through scanning electron microscope (SEM) analysis. Through Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis, the chemical composition, aligning with glycosidic bond characteristics, has been deciphered. Furthermore, the antimicrobial and antibiofilm activities against pathogenic bacteria, particularly Bacillus sp., demonstrated potential applications in combating antibiotic resistance. The EPS exhibited notable antioxidant activity (89.36% DPPH scavenging), along with high water-holding capacity (575%), emulsifying activity, and flocculation activity, suggesting its potential as a stabilizing agent in the food industry. Overall, this study provides a comprehensive characterization of Enterococcus hirae MLG3-25-1 EPS, emphasizing its diverse applications in antimicrobial, antioxidant, and food-related industries. These findings lay the groundwork for further exploration and utilization of this EPS in various sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
期刊最新文献
Diesel-degradation by indigenous bacteria of petroleum-contaminated soils. Rapid on-site detection of viable Vibrio parahaemolyticus in seafood using cis-diamminedichloroplatinum and colorimetric loop-mediated isothermal amplification (CDDP-LAMP). Scrutinizing harsh habitats endophytic fungi and their prospective effect on water-stressed maize seedlings. Effect of calf separation on gut microbiome and fecal metabolome of mother in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Unstable pathogen profile in spotted seal (Phoca largha) gut microbiota and limited turnover with habitat microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1