Matthew Macowan, Céline Pattaroni, Katie Bonner, Roxanne Chatzis, Carmel Daunt, Mindy Gore, Adnan Custovic, Michael D Shields, Ultan F Power, Jonathan Grigg, Graham Roberts, Peter Ghazal, Jürgen Schwarze, Steve Turner, Andrew Bush, Sejal Saglani, Clare M Lloyd, Benjamin J Marsland
{"title":"深度多血型分析揭示学龄前喘息和哮喘的分子特征","authors":"Matthew Macowan, Céline Pattaroni, Katie Bonner, Roxanne Chatzis, Carmel Daunt, Mindy Gore, Adnan Custovic, Michael D Shields, Ultan F Power, Jonathan Grigg, Graham Roberts, Peter Ghazal, Jürgen Schwarze, Steve Turner, Andrew Bush, Sejal Saglani, Clare M Lloyd, Benjamin J Marsland","doi":"10.1016/j.jaci.2024.08.017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wheezing in childhood is prevalent, with over one-half of all children experiencing at least 1 episode by age 6. The pathophysiology of wheeze, especially why some children develop asthma while others do not, remains unclear.</p><p><strong>Objectives: </strong>This study addresses the knowledge gap by investigating the transition from preschool wheeze to asthma using multiomic profiling.</p><p><strong>Methods: </strong>Unsupervised, group-agnostic integrative multiomic factor analysis was performed using host/bacterial (meta)transcriptomic and bacterial shotgun metagenomic datasets from bronchial brush samples paired with metabolomic/lipidomic data from bronchoalveolar lavage samples acquired from children 1-17 years old.</p><p><strong>Results: </strong>Two multiomic factors were identified: one characterizing preschool-aged recurrent wheeze and another capturing an inferred trajectory from health to wheeze and school-aged asthma. Recurrent wheeze was driven by type 1-immune signatures, coupled with upregulation of immune-related and neutrophil-associated lipids and metabolites. Comparatively, progression toward asthma from ages 1 to 18 was dominated by changes related to airway epithelial cell gene expression, type 2-immune responses, and constituents of the airway microbiome, such as increased Haemophilus influenzae.</p><p><strong>Conclusions: </strong>These factors highlighted distinctions between an inflammation-related phenotype in preschool wheeze, and the predominance of airway epithelial-related changes linked with the inferred trajectory toward asthma. These findings provide insights into the differential mechanisms driving the progression from wheeze to asthma and may inform targeted therapeutic strategies.</p>","PeriodicalId":14936,"journal":{"name":"Journal of Allergy and Clinical Immunology","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep multiomic profiling reveals molecular signatures that underpin preschool wheeze and asthma.\",\"authors\":\"Matthew Macowan, Céline Pattaroni, Katie Bonner, Roxanne Chatzis, Carmel Daunt, Mindy Gore, Adnan Custovic, Michael D Shields, Ultan F Power, Jonathan Grigg, Graham Roberts, Peter Ghazal, Jürgen Schwarze, Steve Turner, Andrew Bush, Sejal Saglani, Clare M Lloyd, Benjamin J Marsland\",\"doi\":\"10.1016/j.jaci.2024.08.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Wheezing in childhood is prevalent, with over one-half of all children experiencing at least 1 episode by age 6. The pathophysiology of wheeze, especially why some children develop asthma while others do not, remains unclear.</p><p><strong>Objectives: </strong>This study addresses the knowledge gap by investigating the transition from preschool wheeze to asthma using multiomic profiling.</p><p><strong>Methods: </strong>Unsupervised, group-agnostic integrative multiomic factor analysis was performed using host/bacterial (meta)transcriptomic and bacterial shotgun metagenomic datasets from bronchial brush samples paired with metabolomic/lipidomic data from bronchoalveolar lavage samples acquired from children 1-17 years old.</p><p><strong>Results: </strong>Two multiomic factors were identified: one characterizing preschool-aged recurrent wheeze and another capturing an inferred trajectory from health to wheeze and school-aged asthma. Recurrent wheeze was driven by type 1-immune signatures, coupled with upregulation of immune-related and neutrophil-associated lipids and metabolites. Comparatively, progression toward asthma from ages 1 to 18 was dominated by changes related to airway epithelial cell gene expression, type 2-immune responses, and constituents of the airway microbiome, such as increased Haemophilus influenzae.</p><p><strong>Conclusions: </strong>These factors highlighted distinctions between an inflammation-related phenotype in preschool wheeze, and the predominance of airway epithelial-related changes linked with the inferred trajectory toward asthma. These findings provide insights into the differential mechanisms driving the progression from wheeze to asthma and may inform targeted therapeutic strategies.</p>\",\"PeriodicalId\":14936,\"journal\":{\"name\":\"Journal of Allergy and Clinical Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Allergy and Clinical Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jaci.2024.08.017\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ALLERGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Allergy and Clinical Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jaci.2024.08.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
Deep multiomic profiling reveals molecular signatures that underpin preschool wheeze and asthma.
Background: Wheezing in childhood is prevalent, with over one-half of all children experiencing at least 1 episode by age 6. The pathophysiology of wheeze, especially why some children develop asthma while others do not, remains unclear.
Objectives: This study addresses the knowledge gap by investigating the transition from preschool wheeze to asthma using multiomic profiling.
Methods: Unsupervised, group-agnostic integrative multiomic factor analysis was performed using host/bacterial (meta)transcriptomic and bacterial shotgun metagenomic datasets from bronchial brush samples paired with metabolomic/lipidomic data from bronchoalveolar lavage samples acquired from children 1-17 years old.
Results: Two multiomic factors were identified: one characterizing preschool-aged recurrent wheeze and another capturing an inferred trajectory from health to wheeze and school-aged asthma. Recurrent wheeze was driven by type 1-immune signatures, coupled with upregulation of immune-related and neutrophil-associated lipids and metabolites. Comparatively, progression toward asthma from ages 1 to 18 was dominated by changes related to airway epithelial cell gene expression, type 2-immune responses, and constituents of the airway microbiome, such as increased Haemophilus influenzae.
Conclusions: These factors highlighted distinctions between an inflammation-related phenotype in preschool wheeze, and the predominance of airway epithelial-related changes linked with the inferred trajectory toward asthma. These findings provide insights into the differential mechanisms driving the progression from wheeze to asthma and may inform targeted therapeutic strategies.
期刊介绍:
The Journal of Allergy and Clinical Immunology is a prestigious publication that features groundbreaking research in the fields of Allergy, Asthma, and Immunology. This influential journal publishes high-impact research papers that explore various topics, including asthma, food allergy, allergic rhinitis, atopic dermatitis, primary immune deficiencies, occupational and environmental allergy, and other allergic and immunologic diseases. The articles not only report on clinical trials and mechanistic studies but also provide insights into novel therapies, underlying mechanisms, and important discoveries that contribute to our understanding of these diseases. By sharing this valuable information, the journal aims to enhance the diagnosis and management of patients in the future.