{"title":"气候变化对植物与微生物组之间相互作用的新影响:综述。","authors":"Nilanjan Chakraborty, Sunanda Halder, Chetan Keswani, Jessica Vaca, Aurelio Ortiz, Estibaliz Sansinenea","doi":"10.1002/jobm.202400345","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>One of the most talked about issues of the 21st century is climate change, as it affects not just our health but also forestry, agriculture, biodiversity, the ecosystem, and the energy supply. Greenhouse gases are the primary cause of climate change, having dramatic effects on the environment. Climate change has an impact on the function and composition of the terrestrial microbial community both directly and indirectly. Changes in the prevailing climatic conditions brought about by climate change will lead to modifications in plant physiology, root exudation, signal alteration, and the quantity, makeup, and diversity of soil microbial communities. Microbiological activity is very crucial in organic production systems due to the organic origin of microorganisms. Microbes that benefit crop plants are known as plant growth-promoting microorganisms. Thus, the effects of climate change on the environment also have an impact on the abilities of beneficial bacteria to support plant growth, health, and root colonization. In this review, we have covered the effects of temperature, precipitation, drought, and CO<sub>2</sub> on plant–microbe interactions, as well as some physiological implications of these changes. Additionally, this paper highlights the ways in which bacteria in plants' rhizosphere react to the dominant climatic conditions in the soil environment. The goal of this study is to analyze the effects of climate change on plant–microbe interactions.</p>\n </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Aspects of the Effects of Climate Change on Interactions Between Plants and Microbiomes: A Review\",\"authors\":\"Nilanjan Chakraborty, Sunanda Halder, Chetan Keswani, Jessica Vaca, Aurelio Ortiz, Estibaliz Sansinenea\",\"doi\":\"10.1002/jobm.202400345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>One of the most talked about issues of the 21st century is climate change, as it affects not just our health but also forestry, agriculture, biodiversity, the ecosystem, and the energy supply. Greenhouse gases are the primary cause of climate change, having dramatic effects on the environment. Climate change has an impact on the function and composition of the terrestrial microbial community both directly and indirectly. Changes in the prevailing climatic conditions brought about by climate change will lead to modifications in plant physiology, root exudation, signal alteration, and the quantity, makeup, and diversity of soil microbial communities. Microbiological activity is very crucial in organic production systems due to the organic origin of microorganisms. Microbes that benefit crop plants are known as plant growth-promoting microorganisms. Thus, the effects of climate change on the environment also have an impact on the abilities of beneficial bacteria to support plant growth, health, and root colonization. In this review, we have covered the effects of temperature, precipitation, drought, and CO<sub>2</sub> on plant–microbe interactions, as well as some physiological implications of these changes. Additionally, this paper highlights the ways in which bacteria in plants' rhizosphere react to the dominant climatic conditions in the soil environment. The goal of this study is to analyze the effects of climate change on plant–microbe interactions.</p>\\n </div>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400345\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400345","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
New Aspects of the Effects of Climate Change on Interactions Between Plants and Microbiomes: A Review
One of the most talked about issues of the 21st century is climate change, as it affects not just our health but also forestry, agriculture, biodiversity, the ecosystem, and the energy supply. Greenhouse gases are the primary cause of climate change, having dramatic effects on the environment. Climate change has an impact on the function and composition of the terrestrial microbial community both directly and indirectly. Changes in the prevailing climatic conditions brought about by climate change will lead to modifications in plant physiology, root exudation, signal alteration, and the quantity, makeup, and diversity of soil microbial communities. Microbiological activity is very crucial in organic production systems due to the organic origin of microorganisms. Microbes that benefit crop plants are known as plant growth-promoting microorganisms. Thus, the effects of climate change on the environment also have an impact on the abilities of beneficial bacteria to support plant growth, health, and root colonization. In this review, we have covered the effects of temperature, precipitation, drought, and CO2 on plant–microbe interactions, as well as some physiological implications of these changes. Additionally, this paper highlights the ways in which bacteria in plants' rhizosphere react to the dominant climatic conditions in the soil environment. The goal of this study is to analyze the effects of climate change on plant–microbe interactions.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).