{"title":"Enpp1突变会促进刺猬信号在异位骨化过程中的上调。","authors":"Zhongyuan He, Zhengya Zhu, Tao Tang, Fuan Wang, Peng Guo, Jianfeng Li, Nguyen Tran Canh Tung, Qian Liang, Shaoyu Liu, ManMan Gao, Xizhe Liu, Zhiyu Zhou","doi":"10.1007/s00774-024-01543-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Heterotopic ossification of the tendon and ligament (HOTL) is a chronic progressive disease that is usually accompanied by thickening and ossification of ligaments and high osteogenic activity of the surrounding ligament tissue. However, the molecular mechanism of maintaining the cellular phenotype of HOTL remains unclear.</p><p><strong>Materials and methods: </strong>We first constructed a model of HOTL, Enpp1<sup>flox/flox</sup>/EIIa-Cre mice, a novel genetic mouse system. Imaging, histological, and cell-level analyses were performed to investigate the progressive ossification of the posterior longitudinal ligament, Achilles tendons, and degeneration joints caused by Enpp1 deficiency.</p><p><strong>Results: </strong>The results indicate that Enpp1 deficiency led to markedly progressive heterotopic ossification (HO), especially spine, and Achilles tendons, and was associated with progressive degeneration of the knees. The bone mass was decreased in the long bone. Furthermore, fibroblasts from Enpp1<sup>flox/flox</sup>/EIIa-Cre mice had greater osteogenic differentiation potential following induction by osteogenesis, accompanied by enhanced hedgehog (Hh) signaling. In addition, fibroblast cells show senescence, and aggravation of the senescence phenotype by further osteogenic induction.</p><p><strong>Conclusion: </strong>Our study indicated that with increasing age, mutations in Enpp1 promote ectopic ossification of spinal ligaments and endochondral ossification in tendons and further aggravate knee degeneration by upregulating hedgehog signaling.</p>","PeriodicalId":15116,"journal":{"name":"Journal of Bone and Mineral Metabolism","volume":" ","pages":"681-698"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632054/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enpp1 mutations promote upregulation of hedgehog signaling in heterotopic ossification with aging.\",\"authors\":\"Zhongyuan He, Zhengya Zhu, Tao Tang, Fuan Wang, Peng Guo, Jianfeng Li, Nguyen Tran Canh Tung, Qian Liang, Shaoyu Liu, ManMan Gao, Xizhe Liu, Zhiyu Zhou\",\"doi\":\"10.1007/s00774-024-01543-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Heterotopic ossification of the tendon and ligament (HOTL) is a chronic progressive disease that is usually accompanied by thickening and ossification of ligaments and high osteogenic activity of the surrounding ligament tissue. However, the molecular mechanism of maintaining the cellular phenotype of HOTL remains unclear.</p><p><strong>Materials and methods: </strong>We first constructed a model of HOTL, Enpp1<sup>flox/flox</sup>/EIIa-Cre mice, a novel genetic mouse system. Imaging, histological, and cell-level analyses were performed to investigate the progressive ossification of the posterior longitudinal ligament, Achilles tendons, and degeneration joints caused by Enpp1 deficiency.</p><p><strong>Results: </strong>The results indicate that Enpp1 deficiency led to markedly progressive heterotopic ossification (HO), especially spine, and Achilles tendons, and was associated with progressive degeneration of the knees. The bone mass was decreased in the long bone. Furthermore, fibroblasts from Enpp1<sup>flox/flox</sup>/EIIa-Cre mice had greater osteogenic differentiation potential following induction by osteogenesis, accompanied by enhanced hedgehog (Hh) signaling. In addition, fibroblast cells show senescence, and aggravation of the senescence phenotype by further osteogenic induction.</p><p><strong>Conclusion: </strong>Our study indicated that with increasing age, mutations in Enpp1 promote ectopic ossification of spinal ligaments and endochondral ossification in tendons and further aggravate knee degeneration by upregulating hedgehog signaling.</p>\",\"PeriodicalId\":15116,\"journal\":{\"name\":\"Journal of Bone and Mineral Metabolism\",\"volume\":\" \",\"pages\":\"681-698\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00774-024-01543-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00774-024-01543-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Enpp1 mutations promote upregulation of hedgehog signaling in heterotopic ossification with aging.
Introduction: Heterotopic ossification of the tendon and ligament (HOTL) is a chronic progressive disease that is usually accompanied by thickening and ossification of ligaments and high osteogenic activity of the surrounding ligament tissue. However, the molecular mechanism of maintaining the cellular phenotype of HOTL remains unclear.
Materials and methods: We first constructed a model of HOTL, Enpp1flox/flox/EIIa-Cre mice, a novel genetic mouse system. Imaging, histological, and cell-level analyses were performed to investigate the progressive ossification of the posterior longitudinal ligament, Achilles tendons, and degeneration joints caused by Enpp1 deficiency.
Results: The results indicate that Enpp1 deficiency led to markedly progressive heterotopic ossification (HO), especially spine, and Achilles tendons, and was associated with progressive degeneration of the knees. The bone mass was decreased in the long bone. Furthermore, fibroblasts from Enpp1flox/flox/EIIa-Cre mice had greater osteogenic differentiation potential following induction by osteogenesis, accompanied by enhanced hedgehog (Hh) signaling. In addition, fibroblast cells show senescence, and aggravation of the senescence phenotype by further osteogenic induction.
Conclusion: Our study indicated that with increasing age, mutations in Enpp1 promote ectopic ossification of spinal ligaments and endochondral ossification in tendons and further aggravate knee degeneration by upregulating hedgehog signaling.
期刊介绍:
The Journal of Bone and Mineral Metabolism (JBMM) provides an international forum for researchers and clinicians to present and discuss topics relevant to bone, teeth, and mineral metabolism, as well as joint and musculoskeletal disorders. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. Acceptance is based on the originality, significance, and validity of the material presented. The journal is aimed at researchers and clinicians dedicated to improvements in research, development, and patient-care in the fields of bone and mineral metabolism.