中枢神经系统在哺乳动物衰老和长寿的细胞非自主信号机制中的作用。

IF 2.6 4区 医学 Q2 PHYSIOLOGY Journal of Physiological Sciences Pub Date : 2024-08-31 DOI:10.1186/s12576-024-00934-3
Takuya Urushihata, Akiko Satoh
{"title":"中枢神经系统在哺乳动物衰老和长寿的细胞非自主信号机制中的作用。","authors":"Takuya Urushihata, Akiko Satoh","doi":"10.1186/s12576-024-00934-3","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their lifetimes. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regulators of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity and, thereby benefiting to human health.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365208/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of the central nervous system in cell non-autonomous signaling mechanisms of aging and longevity in mammals.\",\"authors\":\"Takuya Urushihata, Akiko Satoh\",\"doi\":\"10.1186/s12576-024-00934-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their lifetimes. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regulators of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity and, thereby benefiting to human health.</p>\",\"PeriodicalId\":16832,\"journal\":{\"name\":\"Journal of Physiological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12576-024-00934-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-024-00934-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在生物体的整个生命周期中,多个器官协调维持着正常的生理功能。最近的研究发现,在一些生物体内,衰老和长寿受细胞非自主信号机制的调控。在大脑中,尤其是在下丘脑中,衰老和长寿受这种细胞非自主信号机制的调控。目前已发现几个下丘脑神经元是哺乳动物长寿的调节器,在啮齿动物模型中,操纵这些神经元可促进寿命延长或缩短寿命。下丘脑的结构和功能在物种进化中高度保守。因此,阐明下丘脑在衰老过程中的功能将揭示衰老和长寿的机制,从而有益于人类健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of the central nervous system in cell non-autonomous signaling mechanisms of aging and longevity in mammals.

Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their lifetimes. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regulators of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity and, thereby benefiting to human health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
4.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound. Fields covered: Adaptation and environment Autonomic nervous function Biophysics Cell sensors and signaling Central nervous system and brain sciences Endocrinology and metabolism Excitable membranes and neural cell physiology Exercise physiology Gastrointestinal and kidney physiology Heart and circulatory physiology Molecular and cellular physiology Muscle physiology Physiome/systems biology Respiration physiology Senses.
期刊最新文献
Advanced glycation end products promote ROS production via PKC/p47 phox axis in skeletal muscle cells. Acupuncture improves spatial learning and memory impairment caused by herpes simplex virus type-1 in rats through the p38 MAPK/CREB pathway. Thermosensing ability of TRPC5: current knowledge and unsettled questions. Acute effects of empagliflozin on open-loop baroreflex function and urine output in streptozotocin-induced type 1 diabetic rats. Anekomochi glutinous rice provides low postprandial glycemic response by enhanced insulin action via GLP-1 release and vagal afferents activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1