揭示支架蛋白CsoS2在介导α-羧酶体外壳的组装和形状中的作用。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2024-10-16 Epub Date: 2024-08-29 DOI:10.1128/mbio.01358-24
Tianpei Li, Taiyu Chen, Ping Chang, Xingwu Ge, Vincent Chriscoli, Gregory F Dykes, Qiang Wang, Lu-Ning Liu
{"title":"揭示支架蛋白CsoS2在介导α-羧酶体外壳的组装和形状中的作用。","authors":"Tianpei Li, Taiyu Chen, Ping Chang, Xingwu Ge, Vincent Chriscoli, Gregory F Dykes, Qiang Wang, Lu-Ning Liu","doi":"10.1128/mbio.01358-24","DOIUrl":null,"url":null,"abstract":"<p><p>Carboxysomes are proteinaceous organelles featuring icosahedral protein shells that enclose the carbon-fixing enzymes, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), along with carbonic anhydrase. The intrinsically disordered scaffolding protein CsoS2 plays a vital role in the construction of α-carboxysomes through bridging the shell and cargo enzymes. The N-terminal domain of CsoS2 binds Rubisco and facilitates Rubisco packaging within the α-carboxysome, whereas the C-terminal domain of CsoS2 (CsoS2-C) anchors to the shell and promotes shell assembly. However, the role of the middle region of CsoS2 (CsoS2-M) has remained elusive. Here, we conducted in-depth examinations on the function of CsoS2-M in the assembly of the α-carboxysome shell by generating a series of recombinant shell variants in the absence of cargos. Our results reveal that CsoS2-M assists CsoS2-C in the assembly of the α-carboxysome shell and plays an important role in shaping the α-carboxysome shell through enhancing the association of shell proteins on both the facet-facet interfaces and flat shell facets. Moreover, CsoS2-M is responsible for recruiting the C-terminal truncated isoform of CsoS2, CsoS2A, into α-carboxysomes, which is crucial for Rubisco encapsulation and packaging. This study not only deepens our knowledge of how the carboxysome shell is constructed and regulated but also lays the groundwork for engineering and repurposing carboxysome-based nanostructures for diverse biotechnological purposes.</p><p><strong>Importance: </strong>Carboxysomes are a paradigm of organelle-like structures in cyanobacteria and many proteobacteria. These nanoscale compartments enclose Rubisco and carbonic anhydrase within an icosahedral virus-like shell to improve CO<sub>2</sub> fixation, playing a vital role in the global carbon cycle. Understanding how the carboxysomes are formed is not only important for basic research studies but also holds promise for repurposing carboxysomes in bioengineering applications. In this study, we focuses on a specific scaffolding protein called CsoS2, which is involved in facilitating the assembly of α-type carboxysomes. By deciphering the functions of different parts of CsoS2, especially its middle region, we provide new insights into how CsoS2 drives the stepwise assembly of the carboxysome at the molecular level. This knowledge will guide the rational design and reprogramming of carboxysome nanostructures for many biotechnological applications.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481516/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncovering the roles of the scaffolding protein CsoS2 in mediating the assembly and shape of the α-carboxysome shell.\",\"authors\":\"Tianpei Li, Taiyu Chen, Ping Chang, Xingwu Ge, Vincent Chriscoli, Gregory F Dykes, Qiang Wang, Lu-Ning Liu\",\"doi\":\"10.1128/mbio.01358-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carboxysomes are proteinaceous organelles featuring icosahedral protein shells that enclose the carbon-fixing enzymes, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), along with carbonic anhydrase. The intrinsically disordered scaffolding protein CsoS2 plays a vital role in the construction of α-carboxysomes through bridging the shell and cargo enzymes. The N-terminal domain of CsoS2 binds Rubisco and facilitates Rubisco packaging within the α-carboxysome, whereas the C-terminal domain of CsoS2 (CsoS2-C) anchors to the shell and promotes shell assembly. However, the role of the middle region of CsoS2 (CsoS2-M) has remained elusive. Here, we conducted in-depth examinations on the function of CsoS2-M in the assembly of the α-carboxysome shell by generating a series of recombinant shell variants in the absence of cargos. Our results reveal that CsoS2-M assists CsoS2-C in the assembly of the α-carboxysome shell and plays an important role in shaping the α-carboxysome shell through enhancing the association of shell proteins on both the facet-facet interfaces and flat shell facets. Moreover, CsoS2-M is responsible for recruiting the C-terminal truncated isoform of CsoS2, CsoS2A, into α-carboxysomes, which is crucial for Rubisco encapsulation and packaging. This study not only deepens our knowledge of how the carboxysome shell is constructed and regulated but also lays the groundwork for engineering and repurposing carboxysome-based nanostructures for diverse biotechnological purposes.</p><p><strong>Importance: </strong>Carboxysomes are a paradigm of organelle-like structures in cyanobacteria and many proteobacteria. These nanoscale compartments enclose Rubisco and carbonic anhydrase within an icosahedral virus-like shell to improve CO<sub>2</sub> fixation, playing a vital role in the global carbon cycle. Understanding how the carboxysomes are formed is not only important for basic research studies but also holds promise for repurposing carboxysomes in bioengineering applications. In this study, we focuses on a specific scaffolding protein called CsoS2, which is involved in facilitating the assembly of α-type carboxysomes. By deciphering the functions of different parts of CsoS2, especially its middle region, we provide new insights into how CsoS2 drives the stepwise assembly of the carboxysome at the molecular level. This knowledge will guide the rational design and reprogramming of carboxysome nanostructures for many biotechnological applications.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.01358-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.01358-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

羧酶体是一种蛋白质细胞器,具有二十面体的蛋白质外壳,其中包裹着固碳酶、核酮糖-1,5-二磷酸羧化酶加氧酶(Rubisco)和碳酸酐酶。内在无序支架蛋白 CsoS2 通过连接外壳和货物酶,在构建 α-羧酶体的过程中发挥着重要作用。CsoS2 的 N 端结构域与 Rubisco 结合,促进 Rubisco 在 α-羧酶体中的包装,而 CsoS2 的 C 端结构域(CsoS2-C)则锚定在外壳上,促进外壳的组装。然而,CsoS2 的中间区域(CsoS2-M)的作用却一直难以捉摸。在此,我们通过在没有载体的情况下生成一系列重组外壳变体,对CsoS2-M在α-羧酶体外壳组装过程中的功能进行了深入研究。我们的研究结果表明,CsoS2-M 协助 CsoS2-C 组装α-羧酶体外壳,并通过增强外壳蛋白在面-面界面和扁平外壳面上的结合,在塑造α-羧酶体外壳方面发挥重要作用。此外,CsoS2-M 还负责将 CsoS2 的 C 端截短异构体 CsoS2A 募集到α-方糖体中,这对 Rubisco 的封装和包装至关重要。这项研究不仅加深了我们对羧酶体外壳是如何构建和调控的认识,而且为基于羧酶体的纳米结构的工程化和再利用奠定了基础,可用于多种生物技术目的:羧酶体是蓝藻和许多蛋白细菌中细胞器样结构的典范。这些纳米级小室将 Rubisco 和碳酸酐酶包裹在二十面体病毒样外壳内,以提高二氧化碳的固定能力,在全球碳循环中发挥着重要作用。了解羧酶体是如何形成的不仅对基础研究非常重要,而且有望将羧酶体重新用于生物工程应用。在这项研究中,我们重点研究了一种名为 CsoS2 的特定支架蛋白,它参与促进了 α 型羧酶体的组装。通过破译 CsoS2 不同部分(尤其是中间区域)的功能,我们对 CsoS2 如何在分子水平上推动羧酶体的逐步组装有了新的认识。这些知识将指导羧酶体纳米结构的合理设计和重新编程,从而实现多种生物技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering the roles of the scaffolding protein CsoS2 in mediating the assembly and shape of the α-carboxysome shell.

Carboxysomes are proteinaceous organelles featuring icosahedral protein shells that enclose the carbon-fixing enzymes, ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), along with carbonic anhydrase. The intrinsically disordered scaffolding protein CsoS2 plays a vital role in the construction of α-carboxysomes through bridging the shell and cargo enzymes. The N-terminal domain of CsoS2 binds Rubisco and facilitates Rubisco packaging within the α-carboxysome, whereas the C-terminal domain of CsoS2 (CsoS2-C) anchors to the shell and promotes shell assembly. However, the role of the middle region of CsoS2 (CsoS2-M) has remained elusive. Here, we conducted in-depth examinations on the function of CsoS2-M in the assembly of the α-carboxysome shell by generating a series of recombinant shell variants in the absence of cargos. Our results reveal that CsoS2-M assists CsoS2-C in the assembly of the α-carboxysome shell and plays an important role in shaping the α-carboxysome shell through enhancing the association of shell proteins on both the facet-facet interfaces and flat shell facets. Moreover, CsoS2-M is responsible for recruiting the C-terminal truncated isoform of CsoS2, CsoS2A, into α-carboxysomes, which is crucial for Rubisco encapsulation and packaging. This study not only deepens our knowledge of how the carboxysome shell is constructed and regulated but also lays the groundwork for engineering and repurposing carboxysome-based nanostructures for diverse biotechnological purposes.

Importance: Carboxysomes are a paradigm of organelle-like structures in cyanobacteria and many proteobacteria. These nanoscale compartments enclose Rubisco and carbonic anhydrase within an icosahedral virus-like shell to improve CO2 fixation, playing a vital role in the global carbon cycle. Understanding how the carboxysomes are formed is not only important for basic research studies but also holds promise for repurposing carboxysomes in bioengineering applications. In this study, we focuses on a specific scaffolding protein called CsoS2, which is involved in facilitating the assembly of α-type carboxysomes. By deciphering the functions of different parts of CsoS2, especially its middle region, we provide new insights into how CsoS2 drives the stepwise assembly of the carboxysome at the molecular level. This knowledge will guide the rational design and reprogramming of carboxysome nanostructures for many biotechnological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Chlamydia-driven ISG15 expression dampens the immune response of epithelial cells independently of ISGylation. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labeling. HCV infection activates the proteasome via PA28γ acetylation and heptamerization to facilitate the degradation of RNF2, a catalytic component of polycomb repressive complex 1. Profiling inflammatory outcomes of Candida albicans colonization and food allergy induction in the murine glandular stomach. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1