Amal M Marey, Mohamed A Dkhil, Ahmed A Abdel Moneim, Simeon Santourlidis, Rewaida Abdel-Gaber, Mohammed I Alquraishi, Mohga S Abdalla
{"title":"用生物合成的银纳米粒子对抗败血症引起的肝损伤","authors":"Amal M Marey, Mohamed A Dkhil, Ahmed A Abdel Moneim, Simeon Santourlidis, Rewaida Abdel-Gaber, Mohammed I Alquraishi, Mohga S Abdalla","doi":"10.1002/jemt.24691","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a potentially fatal disease that arises from an infection and is characterized by an uncontrolled immune system reaction. Global healthcare systems bear a heavy financial burden from treating sepsis. This study aimed to provide information on the effective properties of silver nanoparticles derived from pomegranate peel extract (P-AgNP) against sepsis-induced hepatic injury. P-AgNPs were spherical with a diameter of ~19 nm. The animals were placed into four groups, each with seven rats. Group 1 functioned as the control group, receiving only saline for 7 days. Group 2 received only P-AgNPs at a dose of 20 mg/kg. To induce sepsis, groups 3 and 4 were given an intraperitoneal injection of 200 mg/mL cecal slurry. Sixty min later, group 4 was given 20 mg/kg of P-AgNPs daily for 7 days. The concentrations of reduced glutathione, nitric oxide, lipid peroxidation, and superoxide dismutase in liver homogenate were measured to determine the oxidative status. In addition, enzyme activities (alanine aminotransferase, aspartate amino transferase, and alkaline phosphatase) were measured. Furthermore, we investigated the histological changes, immunohistochemical expression of nuclear factor-κB, and mRNA levels of IL1β, IL-6, TNF-α, Bax, BCl2, and Casp-3. P-AgNPs functioned as regulators in a sepsis model, successfully controlling altered gene expression. Following treatment, P-AgNPs improved tion and oxidative state, indicating a role in sepsis management. Based on our findings, we conclude that P-AgNPs have antioxidant activity and may be useful in preventing sepsis-induced liver inflammation, oxidative damage, and apoptosis. RESEARCH HIGHLIGHTS: Pomegranate peel-derived silver nanoparticles (P-AgNPs) enhanced liver function and oxidative state in rats with sepsis-induced hepatic damage. P-AgNPs reduced oxidative stress and liver inflammation via regulating inflammatory and apoptotic gene expression. P-AgNPs enhanced liver enzyme activities, histological structure, and immunohistochemistry expression of nuclear factor-κB.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fighting sepsis-induced liver damage with biosynthesized silver nanoparticles.\",\"authors\":\"Amal M Marey, Mohamed A Dkhil, Ahmed A Abdel Moneim, Simeon Santourlidis, Rewaida Abdel-Gaber, Mohammed I Alquraishi, Mohga S Abdalla\",\"doi\":\"10.1002/jemt.24691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis is a potentially fatal disease that arises from an infection and is characterized by an uncontrolled immune system reaction. Global healthcare systems bear a heavy financial burden from treating sepsis. This study aimed to provide information on the effective properties of silver nanoparticles derived from pomegranate peel extract (P-AgNP) against sepsis-induced hepatic injury. P-AgNPs were spherical with a diameter of ~19 nm. The animals were placed into four groups, each with seven rats. Group 1 functioned as the control group, receiving only saline for 7 days. Group 2 received only P-AgNPs at a dose of 20 mg/kg. To induce sepsis, groups 3 and 4 were given an intraperitoneal injection of 200 mg/mL cecal slurry. Sixty min later, group 4 was given 20 mg/kg of P-AgNPs daily for 7 days. The concentrations of reduced glutathione, nitric oxide, lipid peroxidation, and superoxide dismutase in liver homogenate were measured to determine the oxidative status. In addition, enzyme activities (alanine aminotransferase, aspartate amino transferase, and alkaline phosphatase) were measured. Furthermore, we investigated the histological changes, immunohistochemical expression of nuclear factor-κB, and mRNA levels of IL1β, IL-6, TNF-α, Bax, BCl2, and Casp-3. P-AgNPs functioned as regulators in a sepsis model, successfully controlling altered gene expression. Following treatment, P-AgNPs improved tion and oxidative state, indicating a role in sepsis management. Based on our findings, we conclude that P-AgNPs have antioxidant activity and may be useful in preventing sepsis-induced liver inflammation, oxidative damage, and apoptosis. RESEARCH HIGHLIGHTS: Pomegranate peel-derived silver nanoparticles (P-AgNPs) enhanced liver function and oxidative state in rats with sepsis-induced hepatic damage. P-AgNPs reduced oxidative stress and liver inflammation via regulating inflammatory and apoptotic gene expression. P-AgNPs enhanced liver enzyme activities, histological structure, and immunohistochemistry expression of nuclear factor-κB.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24691\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24691","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Fighting sepsis-induced liver damage with biosynthesized silver nanoparticles.
Sepsis is a potentially fatal disease that arises from an infection and is characterized by an uncontrolled immune system reaction. Global healthcare systems bear a heavy financial burden from treating sepsis. This study aimed to provide information on the effective properties of silver nanoparticles derived from pomegranate peel extract (P-AgNP) against sepsis-induced hepatic injury. P-AgNPs were spherical with a diameter of ~19 nm. The animals were placed into four groups, each with seven rats. Group 1 functioned as the control group, receiving only saline for 7 days. Group 2 received only P-AgNPs at a dose of 20 mg/kg. To induce sepsis, groups 3 and 4 were given an intraperitoneal injection of 200 mg/mL cecal slurry. Sixty min later, group 4 was given 20 mg/kg of P-AgNPs daily for 7 days. The concentrations of reduced glutathione, nitric oxide, lipid peroxidation, and superoxide dismutase in liver homogenate were measured to determine the oxidative status. In addition, enzyme activities (alanine aminotransferase, aspartate amino transferase, and alkaline phosphatase) were measured. Furthermore, we investigated the histological changes, immunohistochemical expression of nuclear factor-κB, and mRNA levels of IL1β, IL-6, TNF-α, Bax, BCl2, and Casp-3. P-AgNPs functioned as regulators in a sepsis model, successfully controlling altered gene expression. Following treatment, P-AgNPs improved tion and oxidative state, indicating a role in sepsis management. Based on our findings, we conclude that P-AgNPs have antioxidant activity and may be useful in preventing sepsis-induced liver inflammation, oxidative damage, and apoptosis. RESEARCH HIGHLIGHTS: Pomegranate peel-derived silver nanoparticles (P-AgNPs) enhanced liver function and oxidative state in rats with sepsis-induced hepatic damage. P-AgNPs reduced oxidative stress and liver inflammation via regulating inflammatory and apoptotic gene expression. P-AgNPs enhanced liver enzyme activities, histological structure, and immunohistochemistry expression of nuclear factor-κB.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.