Priyanka S Rana, James J Ignatz-Hoover, Chunna Guo, Amber L Mosley, Ehsan Malek, Yuriy Fedorov, Drew J Adams, James J Driscoll
{"title":"免疫蛋白酶体激活可扩展 MHC I 类免疫肽组,揭示新抗原并增强 T 细胞的抗骨髓瘤活性。","authors":"Priyanka S Rana, James J Ignatz-Hoover, Chunna Guo, Amber L Mosley, Ehsan Malek, Yuriy Fedorov, Drew J Adams, James J Driscoll","doi":"10.1158/1535-7163.MCT-23-0931","DOIUrl":null,"url":null,"abstract":"<p><p>Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes (CTLs). Immunoproteasomes are highly-specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify Compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma (MM) cells. Compound A increased the presentation of individual MHC-I-bound peptides >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that Compound A binds the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of Compound A on antigen presentation. Treatment of MM cell lines and patient bone marrow-derived CD138+ cells with Compound A increased the antimyeloma activity of allogenic and autologous T-cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T-cells reduced the growth of myeloma xenotransplants in NSG mice. Taken together, our results demonstrate the paradigm-shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunoproteasome activation expands the MHC class I immunopeptidome, unmasks neoantigens and enhances T-cell antimyeloma activity.\",\"authors\":\"Priyanka S Rana, James J Ignatz-Hoover, Chunna Guo, Amber L Mosley, Ehsan Malek, Yuriy Fedorov, Drew J Adams, James J Driscoll\",\"doi\":\"10.1158/1535-7163.MCT-23-0931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes (CTLs). Immunoproteasomes are highly-specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify Compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma (MM) cells. Compound A increased the presentation of individual MHC-I-bound peptides >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that Compound A binds the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of Compound A on antigen presentation. Treatment of MM cell lines and patient bone marrow-derived CD138+ cells with Compound A increased the antimyeloma activity of allogenic and autologous T-cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T-cells reduced the growth of myeloma xenotransplants in NSG mice. Taken together, our results demonstrate the paradigm-shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.</p>\",\"PeriodicalId\":18791,\"journal\":{\"name\":\"Molecular Cancer Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1535-7163.MCT-23-0931\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0931","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
蛋白酶体产生抗原肽,并在肿瘤表面呈现给细胞毒性 T 淋巴细胞(CTL)。免疫蛋白酶体是高度特化的蛋白酶体变体,在抗原递呈细胞中的表达量较高,包含三个组成型蛋白酶体催化亚基的替代物,生成的肽具有疏水性 C 端,适合 MHC I 类(MHC-I)分子的沟槽。癌症的一个特征是能够通过破坏抗原递呈机制和下调 MHC-I 抗原递呈来逃避免疫监视。高通量筛选确定了化合物 A,这是一种新型分子,可选择性地提高免疫蛋白酶体的活性,并增加多发性骨髓瘤(MM)细胞上呈递的 MHC-I 结合肽的数量和多样性。化合物 A 能使单个 MHC-I 结合肽的呈现率提高 100 倍以上,并能揭示骨髓瘤细胞上的肿瘤特异性新抗原。全局蛋白质组整体稳定性测定确定,化合物 A 能与蛋白酶体结构亚基 PSMA1 结合,并促进蛋白酶体激活剂 PA28α/β (PSME1/PSME2)与免疫蛋白酶体的结合。CRISPR/Cas9沉默PSMA1、PSME1或PSME2以及用免疫蛋白酶体特异性自杀抑制剂处理可消除化合物A对抗原呈递的影响。用化合物 A 处理 MM 细胞系和患者骨髓来源的 CD138+ 细胞可提高异体和自体 T 细胞的抗骨髓瘤活性。化合物 A 在体内耐受性良好,与异体 T 细胞联合处理可减少骨髓瘤异种移植在 NSG 小鼠体内的生长。综上所述,我们的研究结果表明了免疫蛋白酶体激活剂在使抗原景观多样化、扩大免疫肽体、增强T细胞导向疗法以及揭示可用于个性化T细胞免疫疗法的新抗原等方面的范式转换影响。
Immunoproteasome activation expands the MHC class I immunopeptidome, unmasks neoantigens and enhances T-cell antimyeloma activity.
Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes (CTLs). Immunoproteasomes are highly-specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify Compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma (MM) cells. Compound A increased the presentation of individual MHC-I-bound peptides >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that Compound A binds the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of Compound A on antigen presentation. Treatment of MM cell lines and patient bone marrow-derived CD138+ cells with Compound A increased the antimyeloma activity of allogenic and autologous T-cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T-cells reduced the growth of myeloma xenotransplants in NSG mice. Taken together, our results demonstrate the paradigm-shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.