Chloé Roffay, Juan Manuel García-Arcos, Pierrik Chapuis, Javier López-Andarias, Falk Schneider, Adai Colom, Caterina Tomba, Ilaria Di Meglio, Katia Barrett, Valentin Dunsing, Stefan Matile, Aurélien Roux, Vincent Mercier
{"title":"教程:膜机械敏感 Flipper 探针的荧光寿命显微镜。","authors":"Chloé Roffay, Juan Manuel García-Arcos, Pierrik Chapuis, Javier López-Andarias, Falk Schneider, Adai Colom, Caterina Tomba, Ilaria Di Meglio, Katia Barrett, Valentin Dunsing, Stefan Matile, Aurélien Roux, Vincent Mercier","doi":"10.1038/s41596-024-01027-6","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring forces within living cells remains a technical challenge. In this Tutorial, we cover the development of hydrophobic mechanosensing fluorescent probes called Flippers, whose fluorescence lifetime depends on lipid packing. Flipper probes can therefore be used as reporters for membrane tension via the measurement of changes in their fluorescence lifetime. We describe the technical optimization of the probe for imaging and provide working examples for their characterizations in a variety of biological and in vitro systems. We further provide a guideline to measure biophysical parameters of cellular membranes by fluorescence lifetime imaging microscopy using Flipper probes, providing evidence that flippers can report long range forces in cells, tissues and organs.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tutorial: fluorescence lifetime microscopy of membrane mechanosensitive Flipper probes.\",\"authors\":\"Chloé Roffay, Juan Manuel García-Arcos, Pierrik Chapuis, Javier López-Andarias, Falk Schneider, Adai Colom, Caterina Tomba, Ilaria Di Meglio, Katia Barrett, Valentin Dunsing, Stefan Matile, Aurélien Roux, Vincent Mercier\",\"doi\":\"10.1038/s41596-024-01027-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring forces within living cells remains a technical challenge. In this Tutorial, we cover the development of hydrophobic mechanosensing fluorescent probes called Flippers, whose fluorescence lifetime depends on lipid packing. Flipper probes can therefore be used as reporters for membrane tension via the measurement of changes in their fluorescence lifetime. We describe the technical optimization of the probe for imaging and provide working examples for their characterizations in a variety of biological and in vitro systems. We further provide a guideline to measure biophysical parameters of cellular membranes by fluorescence lifetime imaging microscopy using Flipper probes, providing evidence that flippers can report long range forces in cells, tissues and organs.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-024-01027-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01027-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Tutorial: fluorescence lifetime microscopy of membrane mechanosensitive Flipper probes.
Measuring forces within living cells remains a technical challenge. In this Tutorial, we cover the development of hydrophobic mechanosensing fluorescent probes called Flippers, whose fluorescence lifetime depends on lipid packing. Flipper probes can therefore be used as reporters for membrane tension via the measurement of changes in their fluorescence lifetime. We describe the technical optimization of the probe for imaging and provide working examples for their characterizations in a variety of biological and in vitro systems. We further provide a guideline to measure biophysical parameters of cellular membranes by fluorescence lifetime imaging microscopy using Flipper probes, providing evidence that flippers can report long range forces in cells, tissues and organs.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.