Yong Yan Liu, Rui Jie Wang, Si Si Ru, Fei Gao, Wei Liu, Xi Zhang
{"title":"疟原虫和曼氏螺旋绦虫成虫磷酸化蛋白质组的比较分析揭示了医学绦虫的磷酸化蛋白质组特征。","authors":"Yong Yan Liu, Rui Jie Wang, Si Si Ru, Fei Gao, Wei Liu, Xi Zhang","doi":"10.1186/s13071-024-06454-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plerocercoid larvae of the tapeworm Spirometra mansoni can infect both humans and animals, leading to severe parasitic zoonosis worldwide. Despite ongoing research efforts, our understanding of the developmental process of S. mansoni remains inadequate. To better characterize posttranslational regulation associated with parasite growth, development, and reproduction, a comparative phosphoproteomic study was conducted on the plerocercoid and adult stages of S. mansoni.</p><p><strong>Methods: </strong>In this study, site-specific phosphoproteomic analysis was conducted via 4D label-free quantitative analysis technology to obtain primary information about the overall phosphorylation status of plerocercoids and adults.</p><p><strong>Results: </strong>A total of 778 differentially abundant proteins (DAPs) were detected between adults and plerocercoids, of which 704 DAPs were upregulated and only 74 were downregulated. DAPs involved in metabolic activity were upregulated in plerocercoid larvae compared with adults, whereas DAPs associated with binding were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses indicated that most DAPs involved in signal transduction and environmental information processing pathways were highly active in adults. DAPs upregulated in the plerocercoid group were enriched mainly in metabolic activities. The kinases PKACA, GSK3B, and smMLCK closely interact, suggesting potential active roles in the growth and development of S. mansoni.</p><p><strong>Conclusions: </strong>The dataset presented in this study offers a valuable resource for forthcoming research on signaling pathways as well as new insights into functional studies on the molecular mechanisms of S. mansoni.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366163/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of phosphorylated proteomes between plerocercoid and adult Spirometra mansoni reveals phosphoproteomic profiles of the medical tapeworm.\",\"authors\":\"Yong Yan Liu, Rui Jie Wang, Si Si Ru, Fei Gao, Wei Liu, Xi Zhang\",\"doi\":\"10.1186/s13071-024-06454-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Plerocercoid larvae of the tapeworm Spirometra mansoni can infect both humans and animals, leading to severe parasitic zoonosis worldwide. Despite ongoing research efforts, our understanding of the developmental process of S. mansoni remains inadequate. To better characterize posttranslational regulation associated with parasite growth, development, and reproduction, a comparative phosphoproteomic study was conducted on the plerocercoid and adult stages of S. mansoni.</p><p><strong>Methods: </strong>In this study, site-specific phosphoproteomic analysis was conducted via 4D label-free quantitative analysis technology to obtain primary information about the overall phosphorylation status of plerocercoids and adults.</p><p><strong>Results: </strong>A total of 778 differentially abundant proteins (DAPs) were detected between adults and plerocercoids, of which 704 DAPs were upregulated and only 74 were downregulated. DAPs involved in metabolic activity were upregulated in plerocercoid larvae compared with adults, whereas DAPs associated with binding were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses indicated that most DAPs involved in signal transduction and environmental information processing pathways were highly active in adults. DAPs upregulated in the plerocercoid group were enriched mainly in metabolic activities. The kinases PKACA, GSK3B, and smMLCK closely interact, suggesting potential active roles in the growth and development of S. mansoni.</p><p><strong>Conclusions: </strong>The dataset presented in this study offers a valuable resource for forthcoming research on signaling pathways as well as new insights into functional studies on the molecular mechanisms of S. mansoni.</p>\",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366163/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-024-06454-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06454-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Comparative analysis of phosphorylated proteomes between plerocercoid and adult Spirometra mansoni reveals phosphoproteomic profiles of the medical tapeworm.
Background: Plerocercoid larvae of the tapeworm Spirometra mansoni can infect both humans and animals, leading to severe parasitic zoonosis worldwide. Despite ongoing research efforts, our understanding of the developmental process of S. mansoni remains inadequate. To better characterize posttranslational regulation associated with parasite growth, development, and reproduction, a comparative phosphoproteomic study was conducted on the plerocercoid and adult stages of S. mansoni.
Methods: In this study, site-specific phosphoproteomic analysis was conducted via 4D label-free quantitative analysis technology to obtain primary information about the overall phosphorylation status of plerocercoids and adults.
Results: A total of 778 differentially abundant proteins (DAPs) were detected between adults and plerocercoids, of which 704 DAPs were upregulated and only 74 were downregulated. DAPs involved in metabolic activity were upregulated in plerocercoid larvae compared with adults, whereas DAPs associated with binding were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses indicated that most DAPs involved in signal transduction and environmental information processing pathways were highly active in adults. DAPs upregulated in the plerocercoid group were enriched mainly in metabolic activities. The kinases PKACA, GSK3B, and smMLCK closely interact, suggesting potential active roles in the growth and development of S. mansoni.
Conclusions: The dataset presented in this study offers a valuable resource for forthcoming research on signaling pathways as well as new insights into functional studies on the molecular mechanisms of S. mansoni.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.