气生根和陆生根的习性影响香草(兰科)细胞壁的组成。

IF 2.5 3区 生物学 Q3 CELL BIOLOGY Protoplasma Pub Date : 2025-01-01 Epub Date: 2024-08-29 DOI:10.1007/s00709-024-01980-9
Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira
{"title":"气生根和陆生根的习性影响香草(兰科)细胞壁的组成。","authors":"Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira","doi":"10.1007/s00709-024-01980-9","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"87-98"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae).\",\"authors\":\"Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira\",\"doi\":\"10.1007/s00709-024-01980-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"87-98\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01980-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01980-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了应对附生习性所带来的限制,兰花发展出了能够提高吸水和用水效率的结构特征,例如带有绒毛的复杂不定根系统。这种特化表皮的细胞壁成分可根据其固定的基质而改变,从而影响根中细胞壁的渗透性、吸水能力和储水能力。目前的研究旨在评估兰科植物香草(Vanilla phaeantha)附着在叶片上、固定在土壤中或自由悬挂的不定根的细胞壁成分。免疫细胞化学分析用于确定气生根和陆生根细胞壁的蛋白质、半纤维素和果胶成分。我们观察到,果胶存在于气生根的不同组织中,而在陆生根中,果胶主要集中在皮层实质中。木聚糖、延展聚糖和阿拉伯半乳聚糖在附着于叶绿体的根的游离侧表皮中沉积较多。气生根中果胶的强标记可能与水和养分的流入有关,而水和养分在这种环境中通常是稀缺的。半纤维素和蛋白质与果胶的排列可能与细胞刚性和可持续性增强有关,这也是气生根的一个重要特征。总之,根的习性可能会干扰V. phaeantha细胞壁的非纤维素成分,这可能与细胞功能的变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae).

In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
期刊最新文献
Antennal sensilla variability among castes and sexes in the leaf-cutter ant Acromyrmex subterraneus subterraneus. Rhodotorula mucilaginosa: a new potential human pathogen found in the ciliate Paramecium bursaria. Ontogenetic differences in sun and shade galls of Clinodiplosis profusa on Eugenia uniflora leaves and the cytological antioxidant mechanisms in gall cells. Effect of drought acclimation on sugar metabolism in millet. Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1