Lijiang Hou, Dongzhi Zhang, Qiufang Wu, Xinqiang Gao, Junwei Wang
{"title":"小麦(Triticum aestivum L.)紫色酸性磷酸酶基因家族的分析和剖析。","authors":"Lijiang Hou, Dongzhi Zhang, Qiufang Wu, Xinqiang Gao, Junwei Wang","doi":"10.1007/s00709-024-01983-6","DOIUrl":null,"url":null,"abstract":"<p><p>Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"73-86"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and profiling of the purple acid phosphatase gene family in wheat (Triticum aestivum L.).\",\"authors\":\"Lijiang Hou, Dongzhi Zhang, Qiufang Wu, Xinqiang Gao, Junwei Wang\",\"doi\":\"10.1007/s00709-024-01983-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"73-86\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01983-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01983-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
紫酸磷酸酶(PAPs)在植物磷营养中发挥着重要作用,是金属磷酯酶的一个重要家族。本研究旨在鉴定小麦 A/B/D 基因组中的 PAP 基因,以阐明该基因家族在植物中的进化机制,并为后续小麦作物磷利用效率的研究提供基因组信息。通过使用拟南芥和大麦的 PAP 蛋白序列作为 BLASTP 对小麦蛋白数据库的查询,从 A/B/D 基因组中共鉴定出 105 个 PAP 基因(TaPAPs)。根据基因结构的相似性和存在的保守蛋白基序,将 TaPAPs 分成六个亚家族:Ia(17 个)、Ib(26 个)、IIa(11 个)、IIb(30 个)、IIIa(12 个)和 IIIb(9 个)。大多数 TaPAPs 来自串联重复(20 个)或节段重复(87 个),其中同源染色体 5A/B/D 上的重复 PAP 基因最多。进一步的分析表明,TaPAPs 负责调节种子、根和叶的发育、激素合成和信号转导,以及植物对非生物胁迫(包括低温、干旱和厌氧条件)的反应。9个TaPAP(TaPAP9-4A/4B/4D、TaPAP24-6A/6B/6D和TaPAP28-7A/7B/7D)在根、芽、叶、穗和种子等不同组织中呈组成型表达,其余基因则表现出组织特异性表达模式。关于对磷酸盐(Pi)剥夺的响应,57 个 TaPAPs 在 Pi 胁迫下在根中高表达,其中包括来自 IIIb 亚家族的 TaPAP31-4A、4B 和 4D 同源物。TaPAP31-4A转基因通过增强磷酸酶的分泌,促进了植物的生长和发育,同时增强了植物对Pi-缺失胁迫的抵抗力。这些发现为理解 TaPAPs 的作用奠定了科学基础,为确定更多候选基因和培育对低磷条件耐受性更强的小麦新品种提供了宝贵的见解。
Analysis and profiling of the purple acid phosphatase gene family in wheat (Triticum aestivum L.).
Purple acid phosphatases (PAPs) play a vital role in plant phosphorus nutrition, serving as a crucial family of metallo-phosphoesterase enzymes. This research aimed to identify the PAP genes from the A/B/D genomes of Triticum aestivum to elucidate evolutionary mechanisms of the gene family in plants and provide genomic information for subsequent research on phosphorous-use efficiency in wheat crops. In total, 105 PAP genes (TaPAPs) were identified from the A/B/D genomes by using the Arabidopsis thaliana and Oryza sativa PAP protein sequences as queries for BLASTP against the wheat protein database. The TaPAPs were grouped into six subfamilies, Ia (17), Ib (26), IIa (11), IIb (30), IIIa (12), and IIIb (9), based on their similarities in the structure of genes and the presence of conserved protein motifs. A majority of TaPAPs were derived from tandemly (20) or segmentally (87) duplicated, with the homoeologous chromosomes 5A/B/D harboring the most duplicated PAP genes. Further analysis indicated that TaPAPs were responsible for the modulation of seed, root, and leaf development and hormone synthesis and signaling, as well as plant responses to abiotic stresses, including low temperatures, drought, and anaerobic conditions. Nine TaPAPs (TaPAP9-4A/4B/4D, TaPAP24-6A/6B/6D, and TaPAP28-7A/7B/7D) were constitutively expressed in diverse tissues such as root, shoot, leaf, spike, and seed, while the remaining genes exhibited tissue-specific expression patterns. Concerning the response to phosphate (Pi) deprivation, 57 TaPAPs were highly expressed in roots under Pi stress, including TaPAP31-4A, 4B, and 4D homeologs from the subfamily IIIb. A TaPAP31-4A transgene in A. thaliana promoted plant growth and development while increasing plant resistance to Pi-deficiency stress by enhancing the secretion of phosphatase. These discoveries provide a scientific foundation for comprehending the role of TaPAPs, offering valuable insights for identifying additional candidate genes and fostering the development of new wheat varieties with enhanced tolerance to low phosphorus conditions.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".