鳞蜥类、蟒蜥类和侏儒蜥类极度重叠鳞片的显微结构和免疫标记。

IF 2.5 3区 生物学 Q3 CELL BIOLOGY Protoplasma Pub Date : 2025-01-01 Epub Date: 2024-08-30 DOI:10.1007/s00709-024-01982-7
Lorenzo Alibardi
{"title":"鳞蜥类、蟒蜥类和侏儒蜥类极度重叠鳞片的显微结构和免疫标记。","authors":"Lorenzo Alibardi","doi":"10.1007/s00709-024-01982-7","DOIUrl":null,"url":null,"abstract":"<p><p>Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"99-115"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic structure and immunolabeling of extremely overlapped scales in some scincid, anguid, and pygopod lizards.\",\"authors\":\"Lorenzo Alibardi\",\"doi\":\"10.1007/s00709-024-01982-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"99-115\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01982-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01982-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

石龙子蜥、鳞蜥和侏儒蜥的皮肤非常平整,因此身体紧凑坚实,表面光亮,有利于它们的滑行和/或爬行运动。本形态学研究利用免疫组织化学和电子显微镜分析了不同蜥蜴身上极度重叠的鳞片的显微形态,包括肢体减少(鳞蜥,如 Lerista bougainvilli、Scincella lateralis、Lampropholis delicata)或无腿(侏儒蜥,如 Lialis burtonis 和 Delma molleri,以及无腿蜥 Anguis fragilis)的物种。表皮的外表面显示出不同的奥伯豪森层微结构,其中含有角质β蛋白(CBPs),这些蛋白的免疫活性各不相同。在这些物种中,β层大多相对较厚,这可能与鳞片在恶劣底质上运动时抵抗强大机械力有关。鳞蜥和巨蜥也拥有并再生骨膜,以加强鳞片的平整度和这些爬行动物在蛇形或窝状运动时的机械阻力。侏儒龙没有骨膜。在 Lerista 和 Lampropholis 石龙子的鳞片深铰链区发现了颗粒状的圆形细胞。这些细胞是否会分泌促进鳞片抗摩擦和决定皮肤表面光泽的物质,还有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microscopic structure and immunolabeling of extremely overlapped scales in some scincid, anguid, and pygopod lizards.

Skink, anguid, and pygopod lizards possess an extremely flat skin, imparting a compact and solid body and shining surface that facilitates their slider and/or fossorial movements. The present morphological study, conducted using immunohistochemistry and electron microscopy, has analyzed the microscopical morphology of extremely overlapped scales in different lizards, including species with limb reduction (scincids such as Lerista bougainvilli, Scincella lateralis, Lampropholis delicata) or legless (pygopods such as Lialis burtonis and Delma molleri and the anguid Anguis fragilis). The outer surface of the epidermis shows different micro-structures of the Oberhautchen layer containing corneous beta-proteins (CBPs) with variable immunoreactivity for these proteins. The beta-layer is relatively thick in most of these species, probably in relation to the resistance against strong mechanical forces acting on scales during the movements on harsh substrates. The scincid and anguid lizards also possess and regenerate osteoderms that reinforce scales flatness and mechanical resistance during the serpentiform or fossorial movements of these reptiles. Osteoderms are absent in pygopods. Roundish cells with a granular content are detected in the deep hinge region of scales in Lerista and Lampropholis skinks. Whether these cells may secrete substances that facilitate scale anti-friction and also determine shining of the skin surface remains to be shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
期刊最新文献
Antennal sensilla variability among castes and sexes in the leaf-cutter ant Acromyrmex subterraneus subterraneus. Rhodotorula mucilaginosa: a new potential human pathogen found in the ciliate Paramecium bursaria. Ontogenetic differences in sun and shade galls of Clinodiplosis profusa on Eugenia uniflora leaves and the cytological antioxidant mechanisms in gall cells. Effect of drought acclimation on sugar metabolism in millet. Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1