Christopher J Barnes, Maria Sophie Bünner, M Rosario Ramírez-Flores, Ida Broman Nielsen, Jazmin Ramos-Madrigal, Daria Zharikova, Chloee M McLaughlin, M Thomas Gilbert, Ruairidh J H Sawers
{"title":"茶树种群的祖先环境塑造了其根部微生物群。","authors":"Christopher J Barnes, Maria Sophie Bünner, M Rosario Ramírez-Flores, Ida Broman Nielsen, Jazmin Ramos-Madrigal, Daria Zharikova, Chloee M McLaughlin, M Thomas Gilbert, Ruairidh J H Sawers","doi":"10.1186/s40793-024-00606-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes.</p><p><strong>Results: </strong>The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations.</p><p><strong>Conclusions: </strong>Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"64"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363609/pdf/","citationCount":"0","resultStr":"{\"title\":\"The ancestral environment of teosinte populations shapes their root microbiome.\",\"authors\":\"Christopher J Barnes, Maria Sophie Bünner, M Rosario Ramírez-Flores, Ida Broman Nielsen, Jazmin Ramos-Madrigal, Daria Zharikova, Chloee M McLaughlin, M Thomas Gilbert, Ruairidh J H Sawers\",\"doi\":\"10.1186/s40793-024-00606-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes.</p><p><strong>Results: </strong>The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations.</p><p><strong>Conclusions: </strong>Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"19 1\",\"pages\":\"64\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363609/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-024-00606-0\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00606-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The ancestral environment of teosinte populations shapes their root microbiome.
Background: The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes.
Results: The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations.
Conclusions: Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.