光系统 II 中的 D1-Tyr246 和 D2-Tyr244:对碳酸氢盐结合以及从 QA 到 QB 的电子传递的见解。

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et Biophysica Acta-Bioenergetics Pub Date : 2024-08-30 DOI:10.1016/j.bbabio.2024.149507
{"title":"光系统 II 中的 D1-Tyr246 和 D2-Tyr244:对碳酸氢盐结合以及从 QA 到 QB 的电子传递的见解。","authors":"","doi":"10.1016/j.bbabio.2024.149507","DOIUrl":null,"url":null,"abstract":"<div><p>In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from <em>Chlamydomonas reinhardtii</em>: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O<sub>2</sub>-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from Q<sub>A</sub><sup>•−</sup> to Q<sub>B</sub> in all mutants. Bicarbonate reconstitution resulted in enhanced O<sub>2</sub>-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.</p></div>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from QA•− to QB\",\"authors\":\"\",\"doi\":\"10.1016/j.bbabio.2024.149507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from <em>Chlamydomonas reinhardtii</em>: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O<sub>2</sub>-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from Q<sub>A</sub><sup>•−</sup> to Q<sub>B</sub> in all mutants. Bicarbonate reconstitution resulted in enhanced O<sub>2</sub>-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.</p></div>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005272824004778\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004778","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在光系统 II(PSII)中,D1-Tyr246 和 D2-Tyr244 对称位于非血红素铁复合物的碳酸氢盐配体的结合部位。在这里,我们通过从莱茵衣藻(Chlamydomonas reinhardtii)中产生四种 PSII 叶绿体突变体,研究了对称排列的酪氨酸对 D1-Tyr246 和 D2-Tyr244 在 PSII 功能中的作用:D1-Y246F、D1-Y246T、D2-Y244F 和 D2-Y244T。这些突变体表现出光自养生长的改变、PSII 蛋白积累的减少以及 O2 生成活性的减弱。闪烁诱导的荧光产量衰减动力学表明,在所有突变体中,从QA--到QB的电子传递速度明显减慢。碳酸氢盐重组导致 O2 生成活性增强,这表明突变体中碳酸氢盐结合不稳定。基于量子力学/分子力学方法的结构分析确定了水通道的存在,该通道导致大量水分子的加入和碳酸氢盐结合位点的不稳定。对碳酸氢盐稳定性至关重要的进水通道在突变体中表现出不同的路径。这些发现揭示了酪氨酸对在维持碳酸氢盐稳定性和促进原生 PSII 高效电子传递方面的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from QA•− to QB

In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from Chlamydomonas reinhardtii: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O2-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from QA•− to QB in all mutants. Bicarbonate reconstitution resulted in enhanced O2-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et Biophysica Acta-Bioenergetics
Biochimica et Biophysica Acta-Bioenergetics 生物-生化与分子生物学
CiteScore
9.50
自引率
7.00%
发文量
363
审稿时长
92 days
期刊介绍: BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.
期刊最新文献
Stimulation of cytochrome c oxidase activity by detergents Insights into electron transfer and bifurcation of the Synechocystis sp. PCC6803 hydrogenase reductase module D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from QA•− to QB Addressing the ambiguity crisis in bioenergetics and thermodynamics Can science be better than the language that reports it?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1