Roy S Horowitz, Zachary D Randall, Christopher J Dy
{"title":"电刺激:增强外周神经损伤后的轴突生长。","authors":"Roy S Horowitz, Zachary D Randall, Christopher J Dy","doi":"10.1142/S2424835524400034","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical stimulation has been integrated in recent decades into rehabilitation protocols following neuromuscular injuries. Existing literature supports the utilisation of prolonged or continuous stimulation generated by implantable or transcutaneous devices for chronic pain subsidence and muscle trophism maintenance, which improve outcomes following microsurgical interventions. Newer uses include brief electrical stimulation for peripheral nerve injury. Brief electrical stimulation has shown promise in expediting regeneration of both torn and crushed nerve axons in the murine model and has been incorporated into a limited number of clinical studies. Augmentation of the natural response of an injured peripheral nerve by electrical stimulation has the potential to accelerate regeneration, presumably leading to improved function and clinical outcomes. We review the existing literature on intraoperative utilisation of electrical stimulation to enhance regeneration, such as neural mechanisms of action and their microscopic effect in animal models, as well as results from initial human studies. <b>Level of Evidence:</b> Level V (Therapeutic).</p>","PeriodicalId":51689,"journal":{"name":"Journal of Hand Surgery-Asian-Pacific Volume","volume":" ","pages":"373-379"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Stimulation: Enhancing Axonal Growth following Peripheral Nerve Injury.\",\"authors\":\"Roy S Horowitz, Zachary D Randall, Christopher J Dy\",\"doi\":\"10.1142/S2424835524400034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical stimulation has been integrated in recent decades into rehabilitation protocols following neuromuscular injuries. Existing literature supports the utilisation of prolonged or continuous stimulation generated by implantable or transcutaneous devices for chronic pain subsidence and muscle trophism maintenance, which improve outcomes following microsurgical interventions. Newer uses include brief electrical stimulation for peripheral nerve injury. Brief electrical stimulation has shown promise in expediting regeneration of both torn and crushed nerve axons in the murine model and has been incorporated into a limited number of clinical studies. Augmentation of the natural response of an injured peripheral nerve by electrical stimulation has the potential to accelerate regeneration, presumably leading to improved function and clinical outcomes. We review the existing literature on intraoperative utilisation of electrical stimulation to enhance regeneration, such as neural mechanisms of action and their microscopic effect in animal models, as well as results from initial human studies. <b>Level of Evidence:</b> Level V (Therapeutic).</p>\",\"PeriodicalId\":51689,\"journal\":{\"name\":\"Journal of Hand Surgery-Asian-Pacific Volume\",\"volume\":\" \",\"pages\":\"373-379\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hand Surgery-Asian-Pacific Volume\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424835524400034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hand Surgery-Asian-Pacific Volume","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424835524400034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"SURGERY","Score":null,"Total":0}
Electrical Stimulation: Enhancing Axonal Growth following Peripheral Nerve Injury.
Electrical stimulation has been integrated in recent decades into rehabilitation protocols following neuromuscular injuries. Existing literature supports the utilisation of prolonged or continuous stimulation generated by implantable or transcutaneous devices for chronic pain subsidence and muscle trophism maintenance, which improve outcomes following microsurgical interventions. Newer uses include brief electrical stimulation for peripheral nerve injury. Brief electrical stimulation has shown promise in expediting regeneration of both torn and crushed nerve axons in the murine model and has been incorporated into a limited number of clinical studies. Augmentation of the natural response of an injured peripheral nerve by electrical stimulation has the potential to accelerate regeneration, presumably leading to improved function and clinical outcomes. We review the existing literature on intraoperative utilisation of electrical stimulation to enhance regeneration, such as neural mechanisms of action and their microscopic effect in animal models, as well as results from initial human studies. Level of Evidence: Level V (Therapeutic).