评估由三维打印聚己内酯/β-磷酸三钙(3D PCL/β-TCP)获得的具有不同结构孔径的人工骨材料。

Zhao Qianjuan, Shan Rong, Liu Shengxi, Liu Xuanhao, Liu Bin, Song Fuxiang
{"title":"评估由三维打印聚己内酯/β-磷酸三钙(3D PCL/β-TCP)获得的具有不同结构孔径的人工骨材料。","authors":"Zhao Qianjuan, Shan Rong, Liu Shengxi, Liu Xuanhao, Liu Bin, Song Fuxiang","doi":"10.1088/1748-605X/ad7564","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial bone is the alternative candidate for the bone defect treatment under the circumstance that there exits enormous challenge to remedy the bone defect caused by attributes like trauma and tumors. However, the impact of pore size discrepancy for regulating new bone generation is still ambiguous. Using direct 3D printing technology, customized 3D polycaprolactone/<i>β</i>-tricalcium phosphate (PCL/<i>β</i>-TCP) artificial bones with different structural pore sizes (1.8, 2.0, 2.3, 2.5, and 2.8 mm) were successfully prepared, abbreviated as the 3D PCL/<i>β</i>-TCP. 3D PCL/<i>β</i>-TCP exhibited a 3D porous structure morphology similar to natural bone and possessed outstanding mechanical properties. Computational fluid dynamics analysis indicated that as the structural pore size increased from 1.8 to 2.8 mm, both velocity difference (from 4.64 × 10<sup>-5</sup>to 7.23 × 10<sup>-6</sup>m s<sup>-1</sup>) and depressurization (from 7.17 × 10<sup>-2</sup>to 2.25 × 10<sup>-2</sup>Pa) decreased as the medium passed through.<i>In vitro</i>biomimetic mineralization experiments confirmed that 3D PCL/<i>β</i>-TCP artificial bones could induce calcium-phosphate complex generation within 4 weeks. Moreover, CCK-8 and Calcein AM live cell staining experiments demonstrated that 3D PCL/<i>β</i>-TCP artificial bones with different structural pore sizes exhibited advantageous cell compatibility, promoting MC3T3-E1 cell proliferation and adhesion.<i>In vivo</i>experiments in rats further indicated that 3D PCL/<i>β</i>-TCP artificial bones with different structural pore sizes promoted new bone formation, with the 2.5 mm group showing the most significant effect. In conclusion, 3D PCL/<i>β</i>-TCP artificial bone with different structural pore sizes could promote new bone formation and 2.5 mm group was the recommended for the bone defect repair.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/<i>β</i>-tricalcium phosphate (3D PCL/<i>β</i>-TCP).\",\"authors\":\"Zhao Qianjuan, Shan Rong, Liu Shengxi, Liu Xuanhao, Liu Bin, Song Fuxiang\",\"doi\":\"10.1088/1748-605X/ad7564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial bone is the alternative candidate for the bone defect treatment under the circumstance that there exits enormous challenge to remedy the bone defect caused by attributes like trauma and tumors. However, the impact of pore size discrepancy for regulating new bone generation is still ambiguous. Using direct 3D printing technology, customized 3D polycaprolactone/<i>β</i>-tricalcium phosphate (PCL/<i>β</i>-TCP) artificial bones with different structural pore sizes (1.8, 2.0, 2.3, 2.5, and 2.8 mm) were successfully prepared, abbreviated as the 3D PCL/<i>β</i>-TCP. 3D PCL/<i>β</i>-TCP exhibited a 3D porous structure morphology similar to natural bone and possessed outstanding mechanical properties. Computational fluid dynamics analysis indicated that as the structural pore size increased from 1.8 to 2.8 mm, both velocity difference (from 4.64 × 10<sup>-5</sup>to 7.23 × 10<sup>-6</sup>m s<sup>-1</sup>) and depressurization (from 7.17 × 10<sup>-2</sup>to 2.25 × 10<sup>-2</sup>Pa) decreased as the medium passed through.<i>In vitro</i>biomimetic mineralization experiments confirmed that 3D PCL/<i>β</i>-TCP artificial bones could induce calcium-phosphate complex generation within 4 weeks. Moreover, CCK-8 and Calcein AM live cell staining experiments demonstrated that 3D PCL/<i>β</i>-TCP artificial bones with different structural pore sizes exhibited advantageous cell compatibility, promoting MC3T3-E1 cell proliferation and adhesion.<i>In vivo</i>experiments in rats further indicated that 3D PCL/<i>β</i>-TCP artificial bones with different structural pore sizes promoted new bone formation, with the 2.5 mm group showing the most significant effect. In conclusion, 3D PCL/<i>β</i>-TCP artificial bone with different structural pore sizes could promote new bone formation and 2.5 mm group was the recommended for the bone defect repair.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ad7564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad7564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于外伤和肿瘤等因素造成的骨缺损是一项巨大的挑战,在这种情况下,人工骨成为治疗骨缺损的替代选择。然而,孔径差异对调节新骨生成的影响仍不明确。利用直接三维打印技术,成功制备了具有不同结构孔径(1.8、2.0、2.3、2.5 和 2.8 毫米)的定制三维 PCL/β-TCP 人工骨,简称三维 PCL/β-TCP。三维 PCL/β-TCP 呈现出与天然骨相似的三维多孔结构形态,并具有出色的力学性能。计算流体动力学分析表明,当结构孔径从 1.8 毫米增大到 2.8 毫米时,介质通过时的速度差(从 4.64E-05 m/s 到 7.23E-06 m/s)和减压(从 7.17E-02 Pa 到 2.25E-02 Pa)均有所减小。体外仿生矿化实验证实,三维 PCL/β-TCP 人工骨可在 4 周内诱导钙磷复合物的生成。此外,CCK-8 和 Calcein AM 活细胞染色实验表明,不同结构孔径的三维 PCL/β-TCP 人工骨具有良好的细胞相容性,可促进 MC3T3-E1 细胞增殖和粘附。大鼠体内实验进一步表明,不同结构孔径的三维 PCL/β-TCP 人工骨促进了新骨的形成,其中 2.5 毫米组的效果最为显著。总之,不同结构孔径的三维 PCL/β-TCP 人工骨能促进新骨形成,建议将 2.5 毫米组用于骨缺损修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/β-tricalcium phosphate (3D PCL/β-TCP).

Artificial bone is the alternative candidate for the bone defect treatment under the circumstance that there exits enormous challenge to remedy the bone defect caused by attributes like trauma and tumors. However, the impact of pore size discrepancy for regulating new bone generation is still ambiguous. Using direct 3D printing technology, customized 3D polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) artificial bones with different structural pore sizes (1.8, 2.0, 2.3, 2.5, and 2.8 mm) were successfully prepared, abbreviated as the 3D PCL/β-TCP. 3D PCL/β-TCP exhibited a 3D porous structure morphology similar to natural bone and possessed outstanding mechanical properties. Computational fluid dynamics analysis indicated that as the structural pore size increased from 1.8 to 2.8 mm, both velocity difference (from 4.64 × 10-5to 7.23 × 10-6m s-1) and depressurization (from 7.17 × 10-2to 2.25 × 10-2Pa) decreased as the medium passed through.In vitrobiomimetic mineralization experiments confirmed that 3D PCL/β-TCP artificial bones could induce calcium-phosphate complex generation within 4 weeks. Moreover, CCK-8 and Calcein AM live cell staining experiments demonstrated that 3D PCL/β-TCP artificial bones with different structural pore sizes exhibited advantageous cell compatibility, promoting MC3T3-E1 cell proliferation and adhesion.In vivoexperiments in rats further indicated that 3D PCL/β-TCP artificial bones with different structural pore sizes promoted new bone formation, with the 2.5 mm group showing the most significant effect. In conclusion, 3D PCL/β-TCP artificial bone with different structural pore sizes could promote new bone formation and 2.5 mm group was the recommended for the bone defect repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalisation of the yield stress measurement in three point bending collapse tests: application to 3D printed flax fibre reinforced hydrogels. Hyaluronic acid modified Cu/Mn-doped metal-organic framework nanocatalyst for chemodynamic therapy. Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. MPS blockade with liposomes controls pharmacokinetics of nanoparticles in a size-dependent manner. Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1