通过三维混合图变换器实现精确的微观结构估算

Junqing Yang, Haotian Jiang, Tewodros Tassew, Peng Sun, Jiquan Ma, Yong Xia, Pew-Thian Yap, Geng Chen
{"title":"通过三维混合图变换器实现精确的微观结构估算","authors":"Junqing Yang, Haotian Jiang, Tewodros Tassew, Peng Sun, Jiquan Ma, Yong Xia, Pew-Thian Yap, Geng Chen","doi":"10.1007/978-3-031-43993-3_3","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating <math><mi>q</mi></math> -space graph learning and <math><mi>x</mi></math> -space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D <math><mi>x</mi></math> -space learning, we propose an efficient <math><mi>q</mi></math> -space learning model based on simplified graph neural networks. Furthermore, we propose a 3D <math><mi>x</mi></math> -space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"25-34"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards Accurate Microstructure Estimation via 3D Hybrid Graph Transformer.\",\"authors\":\"Junqing Yang, Haotian Jiang, Tewodros Tassew, Peng Sun, Jiquan Ma, Yong Xia, Pew-Thian Yap, Geng Chen\",\"doi\":\"10.1007/978-3-031-43993-3_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating <math><mi>q</mi></math> -space graph learning and <math><mi>x</mi></math> -space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D <math><mi>x</mi></math> -space learning, we propose an efficient <math><mi>q</mi></math> -space learning model based on simplified graph neural networks. Furthermore, we propose a 3D <math><mi>x</mi></math> -space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"14227 \",\"pages\":\"25-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43993-3_3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习在利用采样不足的弥散核磁共振成像(dMRI)数据进行微观结构估计方面引起了越来越多的关注。混合图变换器(HGT)是一种具有代表性的方法,它将 q 空间图学习和 x 空间变换器学习整合到一个统一的框架中,从而实现了良好的性能。然而,由于这种方法依赖于二维切片的训练,因此忽略了三维空间信息。针对这一局限性,我们提出了三维混合图变换器(3D-HGT),这是一种能够充分利用三维空间信息和角度信息的先进微结构估计模型。为了解决三维 x 空间学习带来的巨大计算负担,我们提出了一种基于简化图神经网络的高效 q 空间学习模型。此外,我们还提出了基于变换器的三维 x 空间学习模块。在人类连接组项目数据上进行的大量实验表明,我们的 3D-HGT 在定量和定性评估方面都优于包括 HGT 在内的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Accurate Microstructure Estimation via 3D Hybrid Graph Transformer.

Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating q -space graph learning and x -space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D x -space learning, we propose an efficient q -space learning model based on simplified graph neural networks. Furthermore, we propose a 3D x -space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zoom Pattern Signatures for Fetal Ultrasound Structures. Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1