Lina Sprogyte, Mijeong Park, Lamia Nureen, Nicodemus Tedla, Alexander Richardson, Nick Di Girolamo
{"title":"碱性诱导的睑缘干细胞缺乏症临床前小鼠模型的开发和特征描述。","authors":"Lina Sprogyte, Mijeong Park, Lamia Nureen, Nicodemus Tedla, Alexander Richardson, Nick Di Girolamo","doi":"10.1016/j.jtos.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Limbal stem cell deficiency (LSCD) secondary to ocular surface alkali burn is a blinding condition that features corneal conjunctivalization. Mechanistic insights into its pathophysiology are lacking. Here, we developed a mouse model that recapitulates human disease to comprehensively delineate the clinicopathological features of a conjunctivalized cornea.</p></div><div><h3>Methods</h3><p>LSCD was induced in the right eyes of 6-8-week-old C57BL/6 male and female mice (<em>n = 151</em>) by topical administration of 0.25N sodium hydroxide on the cornea. Uninjured left eyes served as controls. Clinical, histological, phenotypic, molecular, and immunological assessments were performed at multiple time-points over 6-months.</p></div><div><h3>Results</h3><p>Clinically, alkali burn caused persistent corneal opacity (p = 0.0014), increased punctate staining (p = 0.0002), and reduced epithelial thickness (p = 0.0082) compared to controls. Total LSCD was confirmed in corneal whole mounts by loss of K12 protein (p < 0.0001) and mRNA expression (p = 0.0090). Instead, K8<sup>+</sup>, K13<sup>+</sup>, K15<sup>+</sup> and MUC5AC<sup>+</sup> conjunctival epithelia prevailed. 20 % of injured corneas developed islands of K12<sup>+</sup> epithelia, suggesting epithelial transdifferentiation. Squamous metaplasia was detected in 50 % of injured corneas. Goblet cell density peaked early post-injury but decreased over time (p = 0.0047). Intraepithelial corneal basal nerve density remained reduced even at 6-months post-injury (p = 0.0487).</p></div><div><h3>Conclusions</h3><p>We developed and comprehensively characterized a preclinical mouse model of alkali-induced LSCD. Understanding the pathophysiological processes that transpire on the ocular surface in LSCD is key to discovering, testing, and advancing biological and pharmacological interventions that can be dispensed prior to or in conjunction with stem cell therapy to rehabilitate the cornea and restore vision.</p></div>","PeriodicalId":54691,"journal":{"name":"Ocular Surface","volume":"34 ","pages":"Pages 329-340"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1542012424000958/pdfft?md5=592d460a11f75adc137bf2afe15e6ac6&pid=1-s2.0-S1542012424000958-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of a preclinical mouse model of alkali-induced limbal stem cell deficiency\",\"authors\":\"Lina Sprogyte, Mijeong Park, Lamia Nureen, Nicodemus Tedla, Alexander Richardson, Nick Di Girolamo\",\"doi\":\"10.1016/j.jtos.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Limbal stem cell deficiency (LSCD) secondary to ocular surface alkali burn is a blinding condition that features corneal conjunctivalization. Mechanistic insights into its pathophysiology are lacking. Here, we developed a mouse model that recapitulates human disease to comprehensively delineate the clinicopathological features of a conjunctivalized cornea.</p></div><div><h3>Methods</h3><p>LSCD was induced in the right eyes of 6-8-week-old C57BL/6 male and female mice (<em>n = 151</em>) by topical administration of 0.25N sodium hydroxide on the cornea. Uninjured left eyes served as controls. Clinical, histological, phenotypic, molecular, and immunological assessments were performed at multiple time-points over 6-months.</p></div><div><h3>Results</h3><p>Clinically, alkali burn caused persistent corneal opacity (p = 0.0014), increased punctate staining (p = 0.0002), and reduced epithelial thickness (p = 0.0082) compared to controls. Total LSCD was confirmed in corneal whole mounts by loss of K12 protein (p < 0.0001) and mRNA expression (p = 0.0090). Instead, K8<sup>+</sup>, K13<sup>+</sup>, K15<sup>+</sup> and MUC5AC<sup>+</sup> conjunctival epithelia prevailed. 20 % of injured corneas developed islands of K12<sup>+</sup> epithelia, suggesting epithelial transdifferentiation. Squamous metaplasia was detected in 50 % of injured corneas. Goblet cell density peaked early post-injury but decreased over time (p = 0.0047). Intraepithelial corneal basal nerve density remained reduced even at 6-months post-injury (p = 0.0487).</p></div><div><h3>Conclusions</h3><p>We developed and comprehensively characterized a preclinical mouse model of alkali-induced LSCD. Understanding the pathophysiological processes that transpire on the ocular surface in LSCD is key to discovering, testing, and advancing biological and pharmacological interventions that can be dispensed prior to or in conjunction with stem cell therapy to rehabilitate the cornea and restore vision.</p></div>\",\"PeriodicalId\":54691,\"journal\":{\"name\":\"Ocular Surface\",\"volume\":\"34 \",\"pages\":\"Pages 329-340\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1542012424000958/pdfft?md5=592d460a11f75adc137bf2afe15e6ac6&pid=1-s2.0-S1542012424000958-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocular Surface\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1542012424000958\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Surface","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1542012424000958","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Development and characterization of a preclinical mouse model of alkali-induced limbal stem cell deficiency
Purpose
Limbal stem cell deficiency (LSCD) secondary to ocular surface alkali burn is a blinding condition that features corneal conjunctivalization. Mechanistic insights into its pathophysiology are lacking. Here, we developed a mouse model that recapitulates human disease to comprehensively delineate the clinicopathological features of a conjunctivalized cornea.
Methods
LSCD was induced in the right eyes of 6-8-week-old C57BL/6 male and female mice (n = 151) by topical administration of 0.25N sodium hydroxide on the cornea. Uninjured left eyes served as controls. Clinical, histological, phenotypic, molecular, and immunological assessments were performed at multiple time-points over 6-months.
Results
Clinically, alkali burn caused persistent corneal opacity (p = 0.0014), increased punctate staining (p = 0.0002), and reduced epithelial thickness (p = 0.0082) compared to controls. Total LSCD was confirmed in corneal whole mounts by loss of K12 protein (p < 0.0001) and mRNA expression (p = 0.0090). Instead, K8+, K13+, K15+ and MUC5AC+ conjunctival epithelia prevailed. 20 % of injured corneas developed islands of K12+ epithelia, suggesting epithelial transdifferentiation. Squamous metaplasia was detected in 50 % of injured corneas. Goblet cell density peaked early post-injury but decreased over time (p = 0.0047). Intraepithelial corneal basal nerve density remained reduced even at 6-months post-injury (p = 0.0487).
Conclusions
We developed and comprehensively characterized a preclinical mouse model of alkali-induced LSCD. Understanding the pathophysiological processes that transpire on the ocular surface in LSCD is key to discovering, testing, and advancing biological and pharmacological interventions that can be dispensed prior to or in conjunction with stem cell therapy to rehabilitate the cornea and restore vision.
期刊介绍:
The Ocular Surface, a quarterly, a peer-reviewed journal, is an authoritative resource that integrates and interprets major findings in diverse fields related to the ocular surface, including ophthalmology, optometry, genetics, molecular biology, pharmacology, immunology, infectious disease, and epidemiology. Its critical review articles cover the most current knowledge on medical and surgical management of ocular surface pathology, new understandings of ocular surface physiology, the meaning of recent discoveries on how the ocular surface responds to injury and disease, and updates on drug and device development. The journal also publishes select original research reports and articles describing cutting-edge techniques and technology in the field.
Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.
Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center