Fang Bai , Chunjie Wang , Sha Wang , Yuxuan Zhao , Feng Feng , Kuipeng Yu , Lei Liu , Xiangdong Yang
{"title":"缺乏 DUSP5 可通过 AMPK/ULK1 途径增强自噬作用,从而抑制急性肾损伤的进展。","authors":"Fang Bai , Chunjie Wang , Sha Wang , Yuxuan Zhao , Feng Feng , Kuipeng Yu , Lei Liu , Xiangdong Yang","doi":"10.1016/j.trsl.2024.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Acute kidney injury (AKI) represents a critical clinical disease characterized by the rapid decline in renal function, carrying a substantial burden of morbidity and mortality. The treatment of AKI is frequently limited by its variable clinical presentations and intricate pathophysiology, highlighting the urgent need for a deeper understanding of its pathogenesis and potential therapeutic targets. Dual-specific protein phosphatase 5 (DUSP5), a member of the serine-threonine phosphatase family, possesses the capability to dephosphorylate extracellular regulated protein kinases (ERK). DUSP5 has emerged as a pivotal player in modulating metabolic signals, inflammatory responses, and cancer progression, while also being closely associated with various kidney diseases. This study systematically scrutinized the function and mechanism of DUSP5 in AKI for the first time, unveiling a substantial increase in DUSP5 expression during AKI. Moreover, DUSP5 knockdown was observed to attenuate the production of inflammatory factors and apoptotic cells in renal tubular epithelial cells by enhancing AMPK/ULK1-mediated autophagy, thus improving renal function. In a word, DUSP5 knockdown in AKI effectively impede disease progression by activating autophagy. This finding holds promise for introducing fresh perspectives and targets for AKI treatment.</p></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":"274 ","pages":"Pages 1-9"},"PeriodicalIF":6.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DUSP5 deficiency suppresses the progression of acute kidney injury by enhancing autophagy through AMPK/ULK1 pathway\",\"authors\":\"Fang Bai , Chunjie Wang , Sha Wang , Yuxuan Zhao , Feng Feng , Kuipeng Yu , Lei Liu , Xiangdong Yang\",\"doi\":\"10.1016/j.trsl.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acute kidney injury (AKI) represents a critical clinical disease characterized by the rapid decline in renal function, carrying a substantial burden of morbidity and mortality. The treatment of AKI is frequently limited by its variable clinical presentations and intricate pathophysiology, highlighting the urgent need for a deeper understanding of its pathogenesis and potential therapeutic targets. Dual-specific protein phosphatase 5 (DUSP5), a member of the serine-threonine phosphatase family, possesses the capability to dephosphorylate extracellular regulated protein kinases (ERK). DUSP5 has emerged as a pivotal player in modulating metabolic signals, inflammatory responses, and cancer progression, while also being closely associated with various kidney diseases. This study systematically scrutinized the function and mechanism of DUSP5 in AKI for the first time, unveiling a substantial increase in DUSP5 expression during AKI. Moreover, DUSP5 knockdown was observed to attenuate the production of inflammatory factors and apoptotic cells in renal tubular epithelial cells by enhancing AMPK/ULK1-mediated autophagy, thus improving renal function. In a word, DUSP5 knockdown in AKI effectively impede disease progression by activating autophagy. This finding holds promise for introducing fresh perspectives and targets for AKI treatment.</p></div>\",\"PeriodicalId\":23226,\"journal\":{\"name\":\"Translational Research\",\"volume\":\"274 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1931524424001518\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1931524424001518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
急性肾损伤(AKI)是一种严重的临床疾病,其特点是肾功能急剧下降,给发病率和死亡率带来沉重负担。急性肾损伤的临床表现多变,病理生理学错综复杂,治疗常常受到限制,因此迫切需要深入了解其发病机制和潜在的治疗靶点。双特异性蛋白磷酸酶 5(DUSP5)是丝氨酸-苏氨酸磷酸酶家族的成员,具有使细胞外调节蛋白激酶(ERK)去磷酸化的能力。DUSP5 已成为调节代谢信号、炎症反应和癌症进展的关键角色,同时也与各种肾脏疾病密切相关。本研究首次系统地研究了 DUSP5 在 AKI 中的功能和机制,发现 DUSP5 在 AKI 中的表达大幅增加。此外,研究还观察到敲除 DUSP5 能通过增强 AMPK/ULK1 介导的自噬作用,减少肾小管上皮细胞中炎性因子和凋亡细胞的产生,从而改善肾功能。总之,在 AKI 中敲除 DUSP5 可通过激活自噬有效阻止疾病进展。这一发现有望为 AKI 治疗提供新的视角和靶点。
DUSP5 deficiency suppresses the progression of acute kidney injury by enhancing autophagy through AMPK/ULK1 pathway
Acute kidney injury (AKI) represents a critical clinical disease characterized by the rapid decline in renal function, carrying a substantial burden of morbidity and mortality. The treatment of AKI is frequently limited by its variable clinical presentations and intricate pathophysiology, highlighting the urgent need for a deeper understanding of its pathogenesis and potential therapeutic targets. Dual-specific protein phosphatase 5 (DUSP5), a member of the serine-threonine phosphatase family, possesses the capability to dephosphorylate extracellular regulated protein kinases (ERK). DUSP5 has emerged as a pivotal player in modulating metabolic signals, inflammatory responses, and cancer progression, while also being closely associated with various kidney diseases. This study systematically scrutinized the function and mechanism of DUSP5 in AKI for the first time, unveiling a substantial increase in DUSP5 expression during AKI. Moreover, DUSP5 knockdown was observed to attenuate the production of inflammatory factors and apoptotic cells in renal tubular epithelial cells by enhancing AMPK/ULK1-mediated autophagy, thus improving renal function. In a word, DUSP5 knockdown in AKI effectively impede disease progression by activating autophagy. This finding holds promise for introducing fresh perspectives and targets for AKI treatment.
期刊介绍:
Translational Research (formerly The Journal of Laboratory and Clinical Medicine) delivers original investigations in the broad fields of laboratory, clinical, and public health research. Published monthly since 1915, it keeps readers up-to-date on significant biomedical research from all subspecialties of medicine.