{"title":"通过微型剪切流池定向的少量纤维蛋白质材料的 X 射线衍射记录。","authors":"Hiroyuki Iwamoto, Kazuhiro Oiwa, Kogiku Shiba, Kazuo Inaba","doi":"10.2142/biophysico.bppb-v21.0014","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes a method for recording X-ray diffraction patterns from a small amount of fibrous protein materials while being oriented by using a micro shear-flow cell. This cell consists of two concentrically arranged glass tubes. The inner tube is stationary, while the outer one rotates at a high speed. The gap between the two tubes is about 100 μm, into which the suspension of fibrous protein materials is injected. By using synchrotron-radiation X-ray microbeams (diameter, 10 μm), clear diffraction images from oriented protein materials can be recorded. The required volume of the sample is only about 10 μl. This method can also be combined with the laser-flash photolysis of caged compounds. Examples of application of this method to the flagella of a green alga <i>Chlamydomonas</i>, and sperm of a tunicate <i>Ciona</i> are presented.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 2","pages":"e210014"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347821/pdf/","citationCount":"0","resultStr":"{\"title\":\"X-ray diffraction recording from a small amount of fibrous protein materials oriented by a micro shear-flow cell.\",\"authors\":\"Hiroyuki Iwamoto, Kazuhiro Oiwa, Kogiku Shiba, Kazuo Inaba\",\"doi\":\"10.2142/biophysico.bppb-v21.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper describes a method for recording X-ray diffraction patterns from a small amount of fibrous protein materials while being oriented by using a micro shear-flow cell. This cell consists of two concentrically arranged glass tubes. The inner tube is stationary, while the outer one rotates at a high speed. The gap between the two tubes is about 100 μm, into which the suspension of fibrous protein materials is injected. By using synchrotron-radiation X-ray microbeams (diameter, 10 μm), clear diffraction images from oriented protein materials can be recorded. The required volume of the sample is only about 10 μl. This method can also be combined with the laser-flash photolysis of caged compounds. Examples of application of this method to the flagella of a green alga <i>Chlamydomonas</i>, and sperm of a tunicate <i>Ciona</i> are presented.</p>\",\"PeriodicalId\":101323,\"journal\":{\"name\":\"Biophysics and physicobiology\",\"volume\":\"21 2\",\"pages\":\"e210014\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics and physicobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2142/biophysico.bppb-v21.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v21.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种利用微型剪切流动池记录少量纤维蛋白质材料定向 X 射线衍射图样的方法。该样品池由两根同心排列的玻璃管组成。内管静止不动,外管高速旋转。两管之间的间隙约为 100 微米,纤维蛋白质材料悬浮液注入其中。利用同步辐射 X 射线微光束(直径 10 μm),可以记录取向蛋白质材料的清晰衍射图像。所需的样品量仅为 10 μl。这种方法还可与笼状化合物的激光闪烁光解相结合。本文举例说明了这种方法在绿色藻类衣藻鞭毛和栉水母精子中的应用。
X-ray diffraction recording from a small amount of fibrous protein materials oriented by a micro shear-flow cell.
This paper describes a method for recording X-ray diffraction patterns from a small amount of fibrous protein materials while being oriented by using a micro shear-flow cell. This cell consists of two concentrically arranged glass tubes. The inner tube is stationary, while the outer one rotates at a high speed. The gap between the two tubes is about 100 μm, into which the suspension of fibrous protein materials is injected. By using synchrotron-radiation X-ray microbeams (diameter, 10 μm), clear diffraction images from oriented protein materials can be recorded. The required volume of the sample is only about 10 μl. This method can also be combined with the laser-flash photolysis of caged compounds. Examples of application of this method to the flagella of a green alga Chlamydomonas, and sperm of a tunicate Ciona are presented.