Jody L. Gookin , Mark G. Papich , Elisa K. Meier , Jeffrey Enders , Stephen H. Stauffer , Erica E. Wassack , Gigi S. Davidson
{"title":"奥拉诺芬在体外对猫胎生三联单胞菌有致死作用,但对自然感染的猫无效","authors":"Jody L. Gookin , Mark G. Papich , Elisa K. Meier , Jeffrey Enders , Stephen H. Stauffer , Erica E. Wassack , Gigi S. Davidson","doi":"10.1016/j.vetpar.2024.110295","DOIUrl":null,"url":null,"abstract":"<div><p>Protozoal diarrhea caused by <em>Tritrichomonas foetus (blagburni)</em> is a prevalent, lifelong, and globally distributed burden in domestic cats. Treatment is limited to the use of 5-nitroimidazoles and treatment failure is common. The repurposed gold salt compound auranofin has killing activity against diverse protozoa in vitro but evidence of efficacy in naturally occurring protozoal infections is lacking. This exploratory study investigated the efficacy and safety of auranofin for treatment of cats with naturally occurring, 5-nitroimidazole-resistant, <em>T. foetus</em> infection. The minimum lethal concentration (MLC) of auranofin against 5 isolates of feline <em>T. foetus</em> was determined under aerobic conditions in vitro. Healthy cats and cats with <em>T. foetus</em> infection were treated with immediate release auranofin (range, 0.5–3 mg/cat for 7 days) or guar gum-coated auranofin capsules (0.5 or 3 mg/cat for 7 days). Adverse effects were monitored by clinical signs and clinicopathologic testing. Efficacy was determined by fecal consistency score, bowel movement frequency, and single-tube nested PCR of feces for <em>T. foetus</em> rDNA. Fecal samples were assayed for concentrations of auranofin, known and predicted metabolites of auranofin, gold containing molecules, and total gold content using HPLC, LC-MS, ion mobility-MS, and ICP-MS, respectively. Auranofin was effective at killing isolates of feline <em>T. foetus</em> at MLC ≥ 1 μg/ml. Treatment of cats with <em>T. foetus</em> infection with either immediate release auranofin or a colon-targeted guar gum-coated tablet of auranofin did not eradicate infection. Treatment failure occurred despite fecal concentrations of gold that met or exceeded the equivalent MLC of auranofin. Neither auranofin, known or predicted metabolites of auranofin, nor any gold-containing molecules >100 Da could be detected in fecal samples of treated cats. Adverse effects associated with auranofin treatment were common but minor. These studies identify that in vitro susceptibility test results of auranofin may not translate to treatment effectiveness in vivo even when achieving gold concentrations equivalent to the MLC of auranofin in the target environment. These studies further establish the absence of any predicted or unpredicted gold containing metabolites in feces after oral administration of auranofin.</p></div>","PeriodicalId":23716,"journal":{"name":"Veterinary parasitology","volume":"331 ","pages":"Article 110295"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auranofin is lethal against feline Tritrichomonas foetus in vitro but ineffective in cats with naturally occurring infection\",\"authors\":\"Jody L. Gookin , Mark G. Papich , Elisa K. Meier , Jeffrey Enders , Stephen H. Stauffer , Erica E. Wassack , Gigi S. Davidson\",\"doi\":\"10.1016/j.vetpar.2024.110295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protozoal diarrhea caused by <em>Tritrichomonas foetus (blagburni)</em> is a prevalent, lifelong, and globally distributed burden in domestic cats. Treatment is limited to the use of 5-nitroimidazoles and treatment failure is common. The repurposed gold salt compound auranofin has killing activity against diverse protozoa in vitro but evidence of efficacy in naturally occurring protozoal infections is lacking. This exploratory study investigated the efficacy and safety of auranofin for treatment of cats with naturally occurring, 5-nitroimidazole-resistant, <em>T. foetus</em> infection. The minimum lethal concentration (MLC) of auranofin against 5 isolates of feline <em>T. foetus</em> was determined under aerobic conditions in vitro. Healthy cats and cats with <em>T. foetus</em> infection were treated with immediate release auranofin (range, 0.5–3 mg/cat for 7 days) or guar gum-coated auranofin capsules (0.5 or 3 mg/cat for 7 days). Adverse effects were monitored by clinical signs and clinicopathologic testing. Efficacy was determined by fecal consistency score, bowel movement frequency, and single-tube nested PCR of feces for <em>T. foetus</em> rDNA. Fecal samples were assayed for concentrations of auranofin, known and predicted metabolites of auranofin, gold containing molecules, and total gold content using HPLC, LC-MS, ion mobility-MS, and ICP-MS, respectively. Auranofin was effective at killing isolates of feline <em>T. foetus</em> at MLC ≥ 1 μg/ml. Treatment of cats with <em>T. foetus</em> infection with either immediate release auranofin or a colon-targeted guar gum-coated tablet of auranofin did not eradicate infection. Treatment failure occurred despite fecal concentrations of gold that met or exceeded the equivalent MLC of auranofin. Neither auranofin, known or predicted metabolites of auranofin, nor any gold-containing molecules >100 Da could be detected in fecal samples of treated cats. Adverse effects associated with auranofin treatment were common but minor. These studies identify that in vitro susceptibility test results of auranofin may not translate to treatment effectiveness in vivo even when achieving gold concentrations equivalent to the MLC of auranofin in the target environment. These studies further establish the absence of any predicted or unpredicted gold containing metabolites in feces after oral administration of auranofin.</p></div>\",\"PeriodicalId\":23716,\"journal\":{\"name\":\"Veterinary parasitology\",\"volume\":\"331 \",\"pages\":\"Article 110295\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary parasitology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304401724001845\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary parasitology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304401724001845","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Auranofin is lethal against feline Tritrichomonas foetus in vitro but ineffective in cats with naturally occurring infection
Protozoal diarrhea caused by Tritrichomonas foetus (blagburni) is a prevalent, lifelong, and globally distributed burden in domestic cats. Treatment is limited to the use of 5-nitroimidazoles and treatment failure is common. The repurposed gold salt compound auranofin has killing activity against diverse protozoa in vitro but evidence of efficacy in naturally occurring protozoal infections is lacking. This exploratory study investigated the efficacy and safety of auranofin for treatment of cats with naturally occurring, 5-nitroimidazole-resistant, T. foetus infection. The minimum lethal concentration (MLC) of auranofin against 5 isolates of feline T. foetus was determined under aerobic conditions in vitro. Healthy cats and cats with T. foetus infection were treated with immediate release auranofin (range, 0.5–3 mg/cat for 7 days) or guar gum-coated auranofin capsules (0.5 or 3 mg/cat for 7 days). Adverse effects were monitored by clinical signs and clinicopathologic testing. Efficacy was determined by fecal consistency score, bowel movement frequency, and single-tube nested PCR of feces for T. foetus rDNA. Fecal samples were assayed for concentrations of auranofin, known and predicted metabolites of auranofin, gold containing molecules, and total gold content using HPLC, LC-MS, ion mobility-MS, and ICP-MS, respectively. Auranofin was effective at killing isolates of feline T. foetus at MLC ≥ 1 μg/ml. Treatment of cats with T. foetus infection with either immediate release auranofin or a colon-targeted guar gum-coated tablet of auranofin did not eradicate infection. Treatment failure occurred despite fecal concentrations of gold that met or exceeded the equivalent MLC of auranofin. Neither auranofin, known or predicted metabolites of auranofin, nor any gold-containing molecules >100 Da could be detected in fecal samples of treated cats. Adverse effects associated with auranofin treatment were common but minor. These studies identify that in vitro susceptibility test results of auranofin may not translate to treatment effectiveness in vivo even when achieving gold concentrations equivalent to the MLC of auranofin in the target environment. These studies further establish the absence of any predicted or unpredicted gold containing metabolites in feces after oral administration of auranofin.
期刊介绍:
The journal Veterinary Parasitology has an open access mirror journal,Veterinary Parasitology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
This journal is concerned with those aspects of helminthology, protozoology and entomology which are of interest to animal health investigators, veterinary practitioners and others with a special interest in parasitology. Papers of the highest quality dealing with all aspects of disease prevention, pathology, treatment, epidemiology, and control of parasites in all domesticated animals, fall within the scope of the journal. Papers of geographically limited (local) interest which are not of interest to an international audience will not be accepted. Authors who submit papers based on local data will need to indicate why their paper is relevant to a broader readership.
Parasitological studies on laboratory animals fall within the scope of the journal only if they provide a reasonably close model of a disease of domestic animals. Additionally the journal will consider papers relating to wildlife species where they may act as disease reservoirs to domestic animals, or as a zoonotic reservoir. Case studies considered to be unique or of specific interest to the journal, will also be considered on occasions at the Editors'' discretion. Papers dealing exclusively with the taxonomy of parasites do not fall within the scope of the journal.