Huasheng Zhu , Xuli Lan , Xiaohui Zeng , Guangcheng Long , Youjun Xie
{"title":"通过自交联聚乙烯醇提高 C-S-H 凝胶的能量耗散能力","authors":"Huasheng Zhu , Xuli Lan , Xiaohui Zeng , Guangcheng Long , Youjun Xie","doi":"10.1016/j.cemconres.2024.107648","DOIUrl":null,"url":null,"abstract":"<div><p>Damping cementitious materials have been widely used in engineering structures for vibration control. However, achieving a balance between the mechanical strength and damping capacity of cementitious materials remains a challenge. Herein, we utilized an initiator (APS) to initiate the self-crosslinking reaction of PVA molecules in C<sub>3</sub>S paste, then successfully introduced the viscoelastic PVA membranes into C-S-H gel to enhance its energy dissipation capacity. Results showed that the self-crosslinking PVA (scPVA) increased the loss modulus (<span><math><msup><mi>E</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup></math></span>) of C-S-H gel by about 158 %, increased loss tangent (<span><math><mo>tan</mo><mi>δ</mi></math></span>) by 85 % and increased the compressive strength by 24 %. Nano-microscopic tests and molecular dynamics (MD) simulation confirmed that scPVA was introduced into C-S-H gel via the hydrogen-bonding interaction, and then formed the viscoelastic PVA membranes, which promoted C<sub>3</sub>S hydration, reduced the pore size of C-S-H gel and increased the mean chain length (MCL) of C-S-H gel. This study proposes a novel approach for designing high-damping cementitious materials.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"185 ","pages":"Article 107648"},"PeriodicalIF":10.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the energy dissipation capacity C-S-H gel through self-crosslinking the poly (vinyl alcohol)\",\"authors\":\"Huasheng Zhu , Xuli Lan , Xiaohui Zeng , Guangcheng Long , Youjun Xie\",\"doi\":\"10.1016/j.cemconres.2024.107648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Damping cementitious materials have been widely used in engineering structures for vibration control. However, achieving a balance between the mechanical strength and damping capacity of cementitious materials remains a challenge. Herein, we utilized an initiator (APS) to initiate the self-crosslinking reaction of PVA molecules in C<sub>3</sub>S paste, then successfully introduced the viscoelastic PVA membranes into C-S-H gel to enhance its energy dissipation capacity. Results showed that the self-crosslinking PVA (scPVA) increased the loss modulus (<span><math><msup><mi>E</mi><mrow><mo>′</mo><mo>′</mo></mrow></msup></math></span>) of C-S-H gel by about 158 %, increased loss tangent (<span><math><mo>tan</mo><mi>δ</mi></math></span>) by 85 % and increased the compressive strength by 24 %. Nano-microscopic tests and molecular dynamics (MD) simulation confirmed that scPVA was introduced into C-S-H gel via the hydrogen-bonding interaction, and then formed the viscoelastic PVA membranes, which promoted C<sub>3</sub>S hydration, reduced the pore size of C-S-H gel and increased the mean chain length (MCL) of C-S-H gel. This study proposes a novel approach for designing high-damping cementitious materials.</p></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"185 \",\"pages\":\"Article 107648\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002291\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002291","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Enhancement of the energy dissipation capacity C-S-H gel through self-crosslinking the poly (vinyl alcohol)
Damping cementitious materials have been widely used in engineering structures for vibration control. However, achieving a balance between the mechanical strength and damping capacity of cementitious materials remains a challenge. Herein, we utilized an initiator (APS) to initiate the self-crosslinking reaction of PVA molecules in C3S paste, then successfully introduced the viscoelastic PVA membranes into C-S-H gel to enhance its energy dissipation capacity. Results showed that the self-crosslinking PVA (scPVA) increased the loss modulus () of C-S-H gel by about 158 %, increased loss tangent () by 85 % and increased the compressive strength by 24 %. Nano-microscopic tests and molecular dynamics (MD) simulation confirmed that scPVA was introduced into C-S-H gel via the hydrogen-bonding interaction, and then formed the viscoelastic PVA membranes, which promoted C3S hydration, reduced the pore size of C-S-H gel and increased the mean chain length (MCL) of C-S-H gel. This study proposes a novel approach for designing high-damping cementitious materials.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.