用木槿深共晶溶剂提取物定制壳聚糖薄膜:制备和表征

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Liquids Pub Date : 2024-08-27 DOI:10.1016/j.molliq.2024.125874
{"title":"用木槿深共晶溶剂提取物定制壳聚糖薄膜:制备和表征","authors":"","doi":"10.1016/j.molliq.2024.125874","DOIUrl":null,"url":null,"abstract":"<div><p>Natural polymers are the most promising alternatives to petroleum-based plastics for developing biodegradable food packaging films. However, the brittleness and lack of active protection of films from most natural polymers pose a challenge to their practical application. The addition of plasticizers and natural extracts to these films is considered an effective solution to address these issues. In this study, the potential for the use of deep eutectic solvents (DESs) and DES extracts derived from <em>Hibiscus sabdariffa</em> in the production of chitosan films and their effects on their mechanical and antioxidant properties were examined. Initially, the extraction efficacy of DESs composed of choline chloride (ChCl) and various carboxylic acids (citric, lactic, tartaric, and oxalic acids) was evaluated in terms of phenolic and anthocyanin contents along with antioxidant activities. Optimal results were achieved with the utilization of ChCl-oxalic acid as the extraction medium. Subsequently, chitosan films were fabricated by introducing DESs and DES extracts as plasticizers and compared with glycerol-plasticized chitosan films. The incorporation of DESs and DES extracts into the film matrix led to a notable reduction (11.78–14.82%) in moisture content compared with glycerol (25.34%). Notably, using ChCl-tartaric acid improved the tensile strength, while ChCl-citric acid enhanced the film flexibility. Films containing ChCl-tartaric acid demonstrated exceptional light barrier properties. SEM analysis revealed an interaction between chitosan and DESs, which was further corroborated by FTIR and XRD. Additionally, DES extracts provided superior antioxidant activity to the films than their pure DESs. These findings suggest a significant potential for DES extracts from <em>Hibiscus sabdariffa</em> as bioactive agents and plasticizers in chitosan films.</p></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan films tailored with deep eutectic solvent extracts from Hibiscus sabdariffa: Fabrication and characterization\",\"authors\":\"\",\"doi\":\"10.1016/j.molliq.2024.125874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural polymers are the most promising alternatives to petroleum-based plastics for developing biodegradable food packaging films. However, the brittleness and lack of active protection of films from most natural polymers pose a challenge to their practical application. The addition of plasticizers and natural extracts to these films is considered an effective solution to address these issues. In this study, the potential for the use of deep eutectic solvents (DESs) and DES extracts derived from <em>Hibiscus sabdariffa</em> in the production of chitosan films and their effects on their mechanical and antioxidant properties were examined. Initially, the extraction efficacy of DESs composed of choline chloride (ChCl) and various carboxylic acids (citric, lactic, tartaric, and oxalic acids) was evaluated in terms of phenolic and anthocyanin contents along with antioxidant activities. Optimal results were achieved with the utilization of ChCl-oxalic acid as the extraction medium. Subsequently, chitosan films were fabricated by introducing DESs and DES extracts as plasticizers and compared with glycerol-plasticized chitosan films. The incorporation of DESs and DES extracts into the film matrix led to a notable reduction (11.78–14.82%) in moisture content compared with glycerol (25.34%). Notably, using ChCl-tartaric acid improved the tensile strength, while ChCl-citric acid enhanced the film flexibility. Films containing ChCl-tartaric acid demonstrated exceptional light barrier properties. SEM analysis revealed an interaction between chitosan and DESs, which was further corroborated by FTIR and XRD. Additionally, DES extracts provided superior antioxidant activity to the films than their pure DESs. These findings suggest a significant potential for DES extracts from <em>Hibiscus sabdariffa</em> as bioactive agents and plasticizers in chitosan films.</p></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732224019330\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224019330","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在开发可生物降解的食品包装薄膜方面,天然聚合物是石油基塑料最有前途的替代品。然而,大多数天然聚合物薄膜的脆性和缺乏活性保护对其实际应用构成了挑战。在这些薄膜中添加增塑剂和天然提取物被认为是解决这些问题的有效方法。本研究考察了在壳聚糖薄膜生产中使用深共晶溶剂(DES)和从木槿中提取的 DES 提取物的潜力,以及它们对薄膜机械性能和抗氧化性能的影响。首先,从酚类和花青素含量以及抗氧化活性的角度评估了由氯化胆碱(ChCl)和各种羧酸(柠檬酸、乳酸、酒石酸和草酸)组成的 DES 的提取功效。使用 ChCl-草酸作为提取介质取得了最佳结果。随后,通过引入 DESs 和 DES 提取物作为增塑剂制作了壳聚糖薄膜,并与甘油增塑壳聚糖薄膜进行了比较。与甘油(25.34%)相比,在薄膜基质中加入 DESs 和 DES 提取物可显著降低水分含量(11.78%-14.82%)。值得注意的是,使用 ChCl-酒石酸提高了拉伸强度,而 ChCl-柠檬酸则增强了薄膜的柔韧性。含有 ChCl-酒石酸的薄膜具有优异的光阻隔性能。SEM 分析显示壳聚糖和 DES 之间存在相互作用,FTIR 和 XRD 进一步证实了这一点。此外,与纯 DES 相比,DES 萃为薄膜提供了更优越的抗氧化活性。这些研究结果表明,木槿中的 DES 提取物作为壳聚糖薄膜中的生物活性剂和增塑剂具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chitosan films tailored with deep eutectic solvent extracts from Hibiscus sabdariffa: Fabrication and characterization

Natural polymers are the most promising alternatives to petroleum-based plastics for developing biodegradable food packaging films. However, the brittleness and lack of active protection of films from most natural polymers pose a challenge to their practical application. The addition of plasticizers and natural extracts to these films is considered an effective solution to address these issues. In this study, the potential for the use of deep eutectic solvents (DESs) and DES extracts derived from Hibiscus sabdariffa in the production of chitosan films and their effects on their mechanical and antioxidant properties were examined. Initially, the extraction efficacy of DESs composed of choline chloride (ChCl) and various carboxylic acids (citric, lactic, tartaric, and oxalic acids) was evaluated in terms of phenolic and anthocyanin contents along with antioxidant activities. Optimal results were achieved with the utilization of ChCl-oxalic acid as the extraction medium. Subsequently, chitosan films were fabricated by introducing DESs and DES extracts as plasticizers and compared with glycerol-plasticized chitosan films. The incorporation of DESs and DES extracts into the film matrix led to a notable reduction (11.78–14.82%) in moisture content compared with glycerol (25.34%). Notably, using ChCl-tartaric acid improved the tensile strength, while ChCl-citric acid enhanced the film flexibility. Films containing ChCl-tartaric acid demonstrated exceptional light barrier properties. SEM analysis revealed an interaction between chitosan and DESs, which was further corroborated by FTIR and XRD. Additionally, DES extracts provided superior antioxidant activity to the films than their pure DESs. These findings suggest a significant potential for DES extracts from Hibiscus sabdariffa as bioactive agents and plasticizers in chitosan films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
期刊最新文献
The adsorption of p-hydroxybenzoic acid on graphene oxide under different pH and in-situ desorption in direct current electric field Cucurbit[6]uril-stabilized copper oxide nanoparticles: Synthesis, potent antimicrobial and in vitro anticancer activity Molecular dynamics study on effects of the synergistic effect of anions and cations on the dissolution of cellulose in ionic liquids Phase behavior and biological activity of lyotropic liquid crystal systems doped with 1,2,3-triazole derivative Doxorubicin removal from an aqueous environment efficiently using bimetallic organic frameworks: Synthesis, characterization, and optimization of adsorption procedure using the Box–Behnken design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1