{"title":"利用对抗域扩展和增强型随机配置网络对不平衡电池数据进行智能故障诊断","authors":"","doi":"10.1016/j.ins.2024.121399","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate and efficient fault diagnosis method for battery systems is crucial to ensuring the safety of battery packs. Addressing the issue of insufficient actual fault data in battery operations, this paper proposes an intelligent fault diagnosis method based on feature-enhanced stochastic configuration networks and adversarial domain expansion of imbalanced battery fault data (AFDEM-FESCN). Firstly, we designed an adversarial fault domain data expansion method (AFDEM). By learning the distribution of fault data through adversarial training, the distribution of sample domains is balanced, thereby reducing model bias. Subsequently, we adjusted the distribution of SCN iterative parameters and added a linear feature layer. This enhances the feature extraction capability of the network through distribution overlay, enabling fault diagnosis. Finally, the effectiveness and feasibility of the proposed method were validated through a practical battery system fault diagnosis case, achieving a diagnostic accuracy of 92.1%. Experimental results demonstrate that the AFDEM-FESCN method exhibits good accuracy in battery system fault diagnosis, providing an effective solution to the challenge of imbalanced data in intelligent fault diagnosis.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent fault diagnosis for unbalanced battery data using adversarial domain expansion and enhanced stochastic configuration networks\",\"authors\":\"\",\"doi\":\"10.1016/j.ins.2024.121399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An accurate and efficient fault diagnosis method for battery systems is crucial to ensuring the safety of battery packs. Addressing the issue of insufficient actual fault data in battery operations, this paper proposes an intelligent fault diagnosis method based on feature-enhanced stochastic configuration networks and adversarial domain expansion of imbalanced battery fault data (AFDEM-FESCN). Firstly, we designed an adversarial fault domain data expansion method (AFDEM). By learning the distribution of fault data through adversarial training, the distribution of sample domains is balanced, thereby reducing model bias. Subsequently, we adjusted the distribution of SCN iterative parameters and added a linear feature layer. This enhances the feature extraction capability of the network through distribution overlay, enabling fault diagnosis. Finally, the effectiveness and feasibility of the proposed method were validated through a practical battery system fault diagnosis case, achieving a diagnostic accuracy of 92.1%. Experimental results demonstrate that the AFDEM-FESCN method exhibits good accuracy in battery system fault diagnosis, providing an effective solution to the challenge of imbalanced data in intelligent fault diagnosis.</p></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524013136\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524013136","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Intelligent fault diagnosis for unbalanced battery data using adversarial domain expansion and enhanced stochastic configuration networks
An accurate and efficient fault diagnosis method for battery systems is crucial to ensuring the safety of battery packs. Addressing the issue of insufficient actual fault data in battery operations, this paper proposes an intelligent fault diagnosis method based on feature-enhanced stochastic configuration networks and adversarial domain expansion of imbalanced battery fault data (AFDEM-FESCN). Firstly, we designed an adversarial fault domain data expansion method (AFDEM). By learning the distribution of fault data through adversarial training, the distribution of sample domains is balanced, thereby reducing model bias. Subsequently, we adjusted the distribution of SCN iterative parameters and added a linear feature layer. This enhances the feature extraction capability of the network through distribution overlay, enabling fault diagnosis. Finally, the effectiveness and feasibility of the proposed method were validated through a practical battery system fault diagnosis case, achieving a diagnostic accuracy of 92.1%. Experimental results demonstrate that the AFDEM-FESCN method exhibits good accuracy in battery system fault diagnosis, providing an effective solution to the challenge of imbalanced data in intelligent fault diagnosis.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.