Sylwia Mozia, Revathy Rajakumaran, Joanna Grzechulska-Damszel, Kacper Szymański, Marek Gryta
{"title":"利用膜蒸馏技术的连续浸没式光催化膜反应器的长期运行:膜性能和处理效率","authors":"Sylwia Mozia, Revathy Rajakumaran, Joanna Grzechulska-Damszel, Kacper Szymański, Marek Gryta","doi":"10.1016/j.wri.2024.100267","DOIUrl":null,"url":null,"abstract":"<div><p>Long term (200 h) continuous operation of a submerged photocatalytic membrane reactor utilizing direct contact membrane distillation (SPMR-DCMD) is presented. Various types of feed contaminated with ketoprofen were treated: brackish water (BW), seawater (SeaW), and secondary wastewater effluent (SE). Ketoprofen decomposition after 24 h exceeded 99.5 %, regardless of feed type. The distillate showed no toxicity to <em>Aliivibrio fischeri</em>. A significant decrease in flux after 100–124 h of BW and SeaW treatment occurred due to scaling, while for SE the flux remained almost constant for 200 h. This indicates that a shorter study would not allow a proper analysis of the process. A scaling layer was formed regardless of feed type, and the formation of CaSO<sub>4</sub>⋅2H<sub>2</sub>O, CaCO<sub>3</sub> or (Ca,Mg)CO<sub>3</sub> was proved. The porous structure of the deposit during SE treatment prevented significant flux deterioration. The formed TiO<sub>2</sub> layer protected the membrane from damage by the growing salt crystals.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"32 ","pages":"Article 100267"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371724000295/pdfft?md5=9dbefa3430107014b8aad97acfc70234&pid=1-s2.0-S2212371724000295-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Long term operation of a continuous submerged photocatalytic membrane reactor utilizing membrane distillation: Membrane performance and treatment efficiency\",\"authors\":\"Sylwia Mozia, Revathy Rajakumaran, Joanna Grzechulska-Damszel, Kacper Szymański, Marek Gryta\",\"doi\":\"10.1016/j.wri.2024.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Long term (200 h) continuous operation of a submerged photocatalytic membrane reactor utilizing direct contact membrane distillation (SPMR-DCMD) is presented. Various types of feed contaminated with ketoprofen were treated: brackish water (BW), seawater (SeaW), and secondary wastewater effluent (SE). Ketoprofen decomposition after 24 h exceeded 99.5 %, regardless of feed type. The distillate showed no toxicity to <em>Aliivibrio fischeri</em>. A significant decrease in flux after 100–124 h of BW and SeaW treatment occurred due to scaling, while for SE the flux remained almost constant for 200 h. This indicates that a shorter study would not allow a proper analysis of the process. A scaling layer was formed regardless of feed type, and the formation of CaSO<sub>4</sub>⋅2H<sub>2</sub>O, CaCO<sub>3</sub> or (Ca,Mg)CO<sub>3</sub> was proved. The porous structure of the deposit during SE treatment prevented significant flux deterioration. The formed TiO<sub>2</sub> layer protected the membrane from damage by the growing salt crystals.</p></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"32 \",\"pages\":\"Article 100267\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212371724000295/pdfft?md5=9dbefa3430107014b8aad97acfc70234&pid=1-s2.0-S2212371724000295-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371724000295\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371724000295","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
摘要
介绍了利用直接接触膜蒸馏(SPMR-DCMD)的浸没式光催化膜反应器的长期(200 小时)连续运行情况。受酮洛芬污染的各种进料均得到了处理:苦咸水(BW)、海水(SeaW)和二级废水废水(SE)。24 小时后,无论饲料类型如何,酮洛芬的分解率均超过 99.5%。蒸馏物对弗氏阿里弧菌(Aliivibrio fischeri)无毒性。BW 和 SeaW 处理 100-124 小时后,由于结垢,通量明显下降,而 SE 处理 200 小时后,通量几乎保持不变。无论进料类型如何,都会形成结垢层,并证明形成了 CaSO4⋅2H2O、CaCO3 或 (Ca,Mg)CO3。在 SE 处理过程中,沉积物的多孔结构防止了明显的通量劣化。形成的二氧化钛层保护了膜免受盐晶体生长的破坏。
Long term operation of a continuous submerged photocatalytic membrane reactor utilizing membrane distillation: Membrane performance and treatment efficiency
Long term (200 h) continuous operation of a submerged photocatalytic membrane reactor utilizing direct contact membrane distillation (SPMR-DCMD) is presented. Various types of feed contaminated with ketoprofen were treated: brackish water (BW), seawater (SeaW), and secondary wastewater effluent (SE). Ketoprofen decomposition after 24 h exceeded 99.5 %, regardless of feed type. The distillate showed no toxicity to Aliivibrio fischeri. A significant decrease in flux after 100–124 h of BW and SeaW treatment occurred due to scaling, while for SE the flux remained almost constant for 200 h. This indicates that a shorter study would not allow a proper analysis of the process. A scaling layer was formed regardless of feed type, and the formation of CaSO4⋅2H2O, CaCO3 or (Ca,Mg)CO3 was proved. The porous structure of the deposit during SE treatment prevented significant flux deterioration. The formed TiO2 layer protected the membrane from damage by the growing salt crystals.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry