{"title":"利用干涉米氏成像实验研究呼吸活动时饮料消耗量与液滴产生量之间的相关性","authors":"Wonseok Oh , Yunchen Bu , Hideki Kikumoto , Ryozo Ooka","doi":"10.1016/j.jaerosci.2024.106458","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of beverage consumption on droplet production during coughing and speaking. Interferometric Mie imaging (IMI) measures particle size using the diffraction characteristics of light and was used to examine the particle size distribution and particle count concentration of exhaled droplets without water (WW), with still water (SW), and with carbonated water (CW). The parameters of the IMI technique were calibrated using glass beads and respiratory droplets were measured for 16 subjects, which showed that drinking beverages had a significant impact on the particle size distribution during coughing and speaking. Another important aspect of this study was the variability in particle emissions among individuals. The results showed that the consumption of SW and CW led to a significant increase in total particle count concentrations in the coughing condition when compared with WW, with no significant difference among beverage type. Individuals with relatively high particle emissions WW showed more particle generation when consuming SW and CW. When speaking, SW ingestion significantly increased the total particle count concentrations when compared with the WW condition, whereas CW consumption did not increase the total particle count concentrations to the same extent as that in the SW condition. These results emphasize that the consumption of beverages such as SW and CW have the potential to significantly increase particle production during respiratory activities, amplifying the potential risks associated with infection transmission.</p></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"182 ","pages":"Article 106458"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation between beverage consumption and droplet production during respiratory activity using interferometric Mie imaging experiment\",\"authors\":\"Wonseok Oh , Yunchen Bu , Hideki Kikumoto , Ryozo Ooka\",\"doi\":\"10.1016/j.jaerosci.2024.106458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the effects of beverage consumption on droplet production during coughing and speaking. Interferometric Mie imaging (IMI) measures particle size using the diffraction characteristics of light and was used to examine the particle size distribution and particle count concentration of exhaled droplets without water (WW), with still water (SW), and with carbonated water (CW). The parameters of the IMI technique were calibrated using glass beads and respiratory droplets were measured for 16 subjects, which showed that drinking beverages had a significant impact on the particle size distribution during coughing and speaking. Another important aspect of this study was the variability in particle emissions among individuals. The results showed that the consumption of SW and CW led to a significant increase in total particle count concentrations in the coughing condition when compared with WW, with no significant difference among beverage type. Individuals with relatively high particle emissions WW showed more particle generation when consuming SW and CW. When speaking, SW ingestion significantly increased the total particle count concentrations when compared with the WW condition, whereas CW consumption did not increase the total particle count concentrations to the same extent as that in the SW condition. These results emphasize that the consumption of beverages such as SW and CW have the potential to significantly increase particle production during respiratory activities, amplifying the potential risks associated with infection transmission.</p></div>\",\"PeriodicalId\":14880,\"journal\":{\"name\":\"Journal of Aerosol Science\",\"volume\":\"182 \",\"pages\":\"Article 106458\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021850224001253\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021850224001253","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Correlation between beverage consumption and droplet production during respiratory activity using interferometric Mie imaging experiment
This study investigates the effects of beverage consumption on droplet production during coughing and speaking. Interferometric Mie imaging (IMI) measures particle size using the diffraction characteristics of light and was used to examine the particle size distribution and particle count concentration of exhaled droplets without water (WW), with still water (SW), and with carbonated water (CW). The parameters of the IMI technique were calibrated using glass beads and respiratory droplets were measured for 16 subjects, which showed that drinking beverages had a significant impact on the particle size distribution during coughing and speaking. Another important aspect of this study was the variability in particle emissions among individuals. The results showed that the consumption of SW and CW led to a significant increase in total particle count concentrations in the coughing condition when compared with WW, with no significant difference among beverage type. Individuals with relatively high particle emissions WW showed more particle generation when consuming SW and CW. When speaking, SW ingestion significantly increased the total particle count concentrations when compared with the WW condition, whereas CW consumption did not increase the total particle count concentrations to the same extent as that in the SW condition. These results emphasize that the consumption of beverages such as SW and CW have the potential to significantly increase particle production during respiratory activities, amplifying the potential risks associated with infection transmission.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.