无线电传播建模的机器学习:全面调查

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2024-08-20 DOI:10.1109/OJCOMS.2024.3446457
Manjuladevi Vasudevan;Murat Yuksel
{"title":"无线电传播建模的机器学习:全面调查","authors":"Manjuladevi Vasudevan;Murat Yuksel","doi":"10.1109/OJCOMS.2024.3446457","DOIUrl":null,"url":null,"abstract":"With recent advancements in the telecommunication industry and the deployment of 5G networks, radio propagation modeling is considered a fundamental task in planning and optimization. Accurate and efficient models of radio propagation enable the estimation of Path Loss (PL) or Received Signal Strength (RSS), which is used in a variety of practical applications including the construction of radio coverage maps and localization. Traditional PL models use fundamental physics laws and regression-based models, which can be guided with measurements. In general, these methods have small computational complexity and have been highly successful in attaining accurate models for settings with trivial environmental complexity (e.g., clear weather or no clutter). However, attaining high accuracy in radio propagation modeling at complex settings (e.g., an urban setting with many buildings and obstacles) has required ray tracing, which computationally complex. Recently, the wireless community has been studying Machine Learning (ML)-based modeling algorithms to find a middle-ground. ML algorithms have become faster to execute and, more importantly, more radio data measurements have become available with the increased deployment of wireless devices. In this survey, we explore the recent advancements in the use of ML for modeling and predicting radio coverage and PL.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640063","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Radio Propagation Modeling: A Comprehensive Survey\",\"authors\":\"Manjuladevi Vasudevan;Murat Yuksel\",\"doi\":\"10.1109/OJCOMS.2024.3446457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With recent advancements in the telecommunication industry and the deployment of 5G networks, radio propagation modeling is considered a fundamental task in planning and optimization. Accurate and efficient models of radio propagation enable the estimation of Path Loss (PL) or Received Signal Strength (RSS), which is used in a variety of practical applications including the construction of radio coverage maps and localization. Traditional PL models use fundamental physics laws and regression-based models, which can be guided with measurements. In general, these methods have small computational complexity and have been highly successful in attaining accurate models for settings with trivial environmental complexity (e.g., clear weather or no clutter). However, attaining high accuracy in radio propagation modeling at complex settings (e.g., an urban setting with many buildings and obstacles) has required ray tracing, which computationally complex. Recently, the wireless community has been studying Machine Learning (ML)-based modeling algorithms to find a middle-ground. ML algorithms have become faster to execute and, more importantly, more radio data measurements have become available with the increased deployment of wireless devices. In this survey, we explore the recent advancements in the use of ML for modeling and predicting radio coverage and PL.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10640063/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10640063/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着电信行业的最新进展和 5G 网络的部署,无线电传播建模被认为是规划和优化的一项基本任务。准确、高效的无线电传播模型可用于估算路径损耗(PL)或接收信号强度(RSS),而路径损耗或接收信号强度可用于各种实际应用,包括构建无线电覆盖图和定位。传统的路径损耗模型使用基本物理定律和基于回归的模型,可通过测量结果进行指导。一般来说,这些方法的计算复杂度较小,在环境复杂度较低(如天气晴朗或无杂波)的情况下,能非常成功地获得精确的模型。然而,要在复杂环境(如有许多建筑物和障碍物的城市环境)中获得高精度的无线电传播模型,就需要进行光线追踪,而光线追踪的计算复杂度很高。最近,无线界一直在研究基于机器学习(ML)的建模算法,以寻找中间地带。ML 算法的执行速度越来越快,更重要的是,随着无线设备部署的增加,无线电数据测量也越来越多。在本调查中,我们将探讨使用 ML 对无线电覆盖和 PL 进行建模和预测的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for Radio Propagation Modeling: A Comprehensive Survey
With recent advancements in the telecommunication industry and the deployment of 5G networks, radio propagation modeling is considered a fundamental task in planning and optimization. Accurate and efficient models of radio propagation enable the estimation of Path Loss (PL) or Received Signal Strength (RSS), which is used in a variety of practical applications including the construction of radio coverage maps and localization. Traditional PL models use fundamental physics laws and regression-based models, which can be guided with measurements. In general, these methods have small computational complexity and have been highly successful in attaining accurate models for settings with trivial environmental complexity (e.g., clear weather or no clutter). However, attaining high accuracy in radio propagation modeling at complex settings (e.g., an urban setting with many buildings and obstacles) has required ray tracing, which computationally complex. Recently, the wireless community has been studying Machine Learning (ML)-based modeling algorithms to find a middle-ground. ML algorithms have become faster to execute and, more importantly, more radio data measurements have become available with the increased deployment of wireless devices. In this survey, we explore the recent advancements in the use of ML for modeling and predicting radio coverage and PL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
GP-DGECN: Geometric Prior Dynamic Group Equivariant Convolutional Networks for Specific Emitter Identification A Tractable Framework for Spectrum Coexistence Between Satellite Receivers and Terrestrial Networks A Survey of LoRaWAN-Integrated Wearable Sensor Networks for Human Activity Recognition: Applications, Challenges and Possible Solutions Detection of Zero-Day Attacks in a Software-Defined LEO Constellation Network Using Enhanced Network Metric Predictions Few-Shot Class-Incremental Learning for Network Intrusion Detection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1