{"title":"揭开以用户为中心的无小区大规模多输入多输出(MIMO)下行链路训练的新领域","authors":"Guillem Femenias;Felip Riera-Palou","doi":"10.1109/OJCOMS.2024.3445990","DOIUrl":null,"url":null,"abstract":"Cell-free massive MIMO (CF-mMIMO) emerges as a pivotal technology in the landscape of beyond-5G and 6G wireless networks, addressing the ever-increasing demand for seamless connectivity and unprecedented data throughput. This paper undertakes a comprehensive exploration of scalable usercentric (UC) CF-mMIMO systems, focusing on critical aspects of downlink (DL) channel state information (CSI) acquisition and its intricate interactions with both distributed and centralized precoding strategies. The paper delves into the crucial role of DL CSI acquisition, particularly in scenarios of weak channel hardening arising from sparse subsets of access points (APs) serving specific mobile stations (MS) in UC strategies, and transmission over spatially correlated multiple keyhole Ricean fading channels. The main contributions of this research work include in-depth analyses of different detection schemes under varying precoding scenarios, offering valuable insights for practical deployment. The pivotal role of DL CSI acquisition in optimizing the performance of UC CF-mMIMO networks is fully assessed, dismissing the use of DL pilot-based detection approaches and advocating for either centralized precoding architectures with statistical CSI-based decoding strategies at the MSs or distributed precoding schemes with DL blind channel estimation-based decoders at the MSs.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640135","citationCount":"0","resultStr":"{\"title\":\"Unveiling New Frontiers of Downlink Training in User-Centric Cell-Free Massive MIMO\",\"authors\":\"Guillem Femenias;Felip Riera-Palou\",\"doi\":\"10.1109/OJCOMS.2024.3445990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free massive MIMO (CF-mMIMO) emerges as a pivotal technology in the landscape of beyond-5G and 6G wireless networks, addressing the ever-increasing demand for seamless connectivity and unprecedented data throughput. This paper undertakes a comprehensive exploration of scalable usercentric (UC) CF-mMIMO systems, focusing on critical aspects of downlink (DL) channel state information (CSI) acquisition and its intricate interactions with both distributed and centralized precoding strategies. The paper delves into the crucial role of DL CSI acquisition, particularly in scenarios of weak channel hardening arising from sparse subsets of access points (APs) serving specific mobile stations (MS) in UC strategies, and transmission over spatially correlated multiple keyhole Ricean fading channels. The main contributions of this research work include in-depth analyses of different detection schemes under varying precoding scenarios, offering valuable insights for practical deployment. The pivotal role of DL CSI acquisition in optimizing the performance of UC CF-mMIMO networks is fully assessed, dismissing the use of DL pilot-based detection approaches and advocating for either centralized precoding architectures with statistical CSI-based decoding strategies at the MSs or distributed precoding schemes with DL blind channel estimation-based decoders at the MSs.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640135\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10640135/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10640135/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unveiling New Frontiers of Downlink Training in User-Centric Cell-Free Massive MIMO
Cell-free massive MIMO (CF-mMIMO) emerges as a pivotal technology in the landscape of beyond-5G and 6G wireless networks, addressing the ever-increasing demand for seamless connectivity and unprecedented data throughput. This paper undertakes a comprehensive exploration of scalable usercentric (UC) CF-mMIMO systems, focusing on critical aspects of downlink (DL) channel state information (CSI) acquisition and its intricate interactions with both distributed and centralized precoding strategies. The paper delves into the crucial role of DL CSI acquisition, particularly in scenarios of weak channel hardening arising from sparse subsets of access points (APs) serving specific mobile stations (MS) in UC strategies, and transmission over spatially correlated multiple keyhole Ricean fading channels. The main contributions of this research work include in-depth analyses of different detection schemes under varying precoding scenarios, offering valuable insights for practical deployment. The pivotal role of DL CSI acquisition in optimizing the performance of UC CF-mMIMO networks is fully assessed, dismissing the use of DL pilot-based detection approaches and advocating for either centralized precoding architectures with statistical CSI-based decoding strategies at the MSs or distributed precoding schemes with DL blind channel estimation-based decoders at the MSs.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.