对真实网络进行特征感知的超低维缩减

Robert Jankowski, Pegah Hozhabrierdi, Marián Boguñá, M. Ángeles Serrano
{"title":"对真实网络进行特征感知的超低维缩减","authors":"Robert Jankowski, Pegah Hozhabrierdi, Marián Boguñá, M. Ángeles Serrano","doi":"10.1038/s44260-024-00013-z","DOIUrl":null,"url":null,"abstract":"In existing models and embedding methods of networked systems, node features describing their qualities are usually overlooked in favor of focusing solely on node connectivity. This study introduces FiD-Mercator, a model-based ultra-low dimensional reduction technique that integrates node features with network structure to create D-dimensional maps of complex networks in a hyperbolic space. This embedding method efficiently uses features as an initial condition, guiding the search of nodes’ coordinates toward an optimal solution. The research reveals that downstream task performance improves with the correlation between network connectivity and features, emphasizing the importance of such correlation for enhancing the description and predictability of real networks. Simultaneously, hyperbolic embedding’s ability to reproduce local network properties remains unaffected by the inclusion of features. The findings highlight the necessity for developing network embedding techniques capable of exploiting such correlations to optimize both network structure and feature association jointly in the future.","PeriodicalId":501707,"journal":{"name":"npj Complexity","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44260-024-00013-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Feature-aware ultra-low dimensional reduction of real networks\",\"authors\":\"Robert Jankowski, Pegah Hozhabrierdi, Marián Boguñá, M. Ángeles Serrano\",\"doi\":\"10.1038/s44260-024-00013-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In existing models and embedding methods of networked systems, node features describing their qualities are usually overlooked in favor of focusing solely on node connectivity. This study introduces FiD-Mercator, a model-based ultra-low dimensional reduction technique that integrates node features with network structure to create D-dimensional maps of complex networks in a hyperbolic space. This embedding method efficiently uses features as an initial condition, guiding the search of nodes’ coordinates toward an optimal solution. The research reveals that downstream task performance improves with the correlation between network connectivity and features, emphasizing the importance of such correlation for enhancing the description and predictability of real networks. Simultaneously, hyperbolic embedding’s ability to reproduce local network properties remains unaffected by the inclusion of features. The findings highlight the necessity for developing network embedding techniques capable of exploiting such correlations to optimize both network structure and feature association jointly in the future.\",\"PeriodicalId\":501707,\"journal\":{\"name\":\"npj Complexity\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44260-024-00013-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44260-024-00013-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44260-024-00013-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现有的网络系统模型和嵌入方法中,描述其质量的节点特征通常被忽视,而只关注节点的连接性。本研究介绍的 FiD-Mercator 是一种基于模型的超低维缩减技术,它将节点特征与网络结构相结合,在双曲空间中创建复杂网络的 D 维映射。这种嵌入方法有效地将特征作为初始条件,引导节点坐标的搜索走向最优解。研究发现,下游任务的性能会随着网络连通性和特征之间的相关性而提高,从而强调了这种相关性对于增强真实网络的描述和可预测性的重要性。同时,双曲嵌入再现局部网络属性的能力不受包含特征的影响。这些发现突出表明,未来有必要开发能够利用这种相关性的网络嵌入技术,以共同优化网络结构和特征关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature-aware ultra-low dimensional reduction of real networks
In existing models and embedding methods of networked systems, node features describing their qualities are usually overlooked in favor of focusing solely on node connectivity. This study introduces FiD-Mercator, a model-based ultra-low dimensional reduction technique that integrates node features with network structure to create D-dimensional maps of complex networks in a hyperbolic space. This embedding method efficiently uses features as an initial condition, guiding the search of nodes’ coordinates toward an optimal solution. The research reveals that downstream task performance improves with the correlation between network connectivity and features, emphasizing the importance of such correlation for enhancing the description and predictability of real networks. Simultaneously, hyperbolic embedding’s ability to reproduce local network properties remains unaffected by the inclusion of features. The findings highlight the necessity for developing network embedding techniques capable of exploiting such correlations to optimize both network structure and feature association jointly in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rebound in epidemic control: how misaligned vaccination timing amplifies infection peaks Triangulation for causal loop diagrams: constructing biopsychosocial models using group model building, literature review, and causal discovery How U.S. Presidential elections strengthen global hate networks Author Correction: Networks and identity drive the spatial diffusion of linguistic innovation in urban and rural areas Urban residential clustering and mobility of ethnic groups: impact of fertility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1