通过对 ICESat-2 ATLAS 和 GEDI 数据进行再处理,改进对森林稀疏的平原地区林冠高度的提取

IF 6 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL GIScience & Remote Sensing Pub Date : 2024-08-27 DOI:10.1080/15481603.2024.2396807
Ruoqi Wang, Yagang Lu, Dengsheng Lu, Guiying Li
{"title":"通过对 ICESat-2 ATLAS 和 GEDI 数据进行再处理,改进对森林稀疏的平原地区林冠高度的提取","authors":"Ruoqi Wang, Yagang Lu, Dengsheng Lu, Guiying Li","doi":"10.1080/15481603.2024.2396807","DOIUrl":null,"url":null,"abstract":"Forest canopy height (FCH) is one of the most important variables for carbon stock estimation. While many studies have focused on extracting FCH from spaceborne LiDAR in regions with spatially cont...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving extraction of forest canopy height through reprocessing ICESat-2 ATLAS and GEDI data in sparsely forested plain regions\",\"authors\":\"Ruoqi Wang, Yagang Lu, Dengsheng Lu, Guiying Li\",\"doi\":\"10.1080/15481603.2024.2396807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forest canopy height (FCH) is one of the most important variables for carbon stock estimation. While many studies have focused on extracting FCH from spaceborne LiDAR in regions with spatially cont...\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2024.2396807\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15481603.2024.2396807","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

森林冠层高度(FCH)是碳储量估算中最重要的变量之一。虽然许多研究都侧重于从空间分布不均的地区的空间激光雷达中提取森林冠层高度(FCH)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving extraction of forest canopy height through reprocessing ICESat-2 ATLAS and GEDI data in sparsely forested plain regions
Forest canopy height (FCH) is one of the most important variables for carbon stock estimation. While many studies have focused on extracting FCH from spaceborne LiDAR in regions with spatially cont...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
9.00%
发文量
84
审稿时长
6 months
期刊介绍: GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.
期刊最新文献
Synthesizing Landsat images using time series model-fitting methods for China’s coastal areas against sparse and irregular observations Methods to compare sites concerning a category’s change during various time intervals LSL-SS-Net: level set loss-guided semantic segmentation networks for landslide extraction Monitoring the Amazon River plume from satellite observations Identifying the spatio-temporal distribution characteristics of offshore wind turbines in China from Sentinel-1 imagery using deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1