利用自监督神经网络获取无视差 X 射线粉末衍射计算机断层扫描数据

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-09-02 DOI:10.1038/s41524-024-01389-1
H. Dong, S. D. M. Jacques, K. T. Butler, O. Gutowski, A.-C. Dippel, M. von Zimmerman, A. M. Beale, A. Vamvakeros
{"title":"利用自监督神经网络获取无视差 X 射线粉末衍射计算机断层扫描数据","authors":"H. Dong, S. D. M. Jacques, K. T. Butler, O. Gutowski, A.-C. Dippel, M. von Zimmerman, A. M. Beale, A. Vamvakeros","doi":"10.1038/s41524-024-01389-1","DOIUrl":null,"url":null,"abstract":"<p>In this study, we introduce a method designed to eliminate parallax artefacts present in X-ray powder diffraction computed tomography data acquired from large samples. These parallax artefacts manifest as artificial peak shifting, broadening and splitting, leading to inaccurate physicochemical information, such as lattice parameters and crystallite sizes. Our approach integrates a 3D artificial neural network architecture with a forward projector that accounts for the experimental geometry and sample thickness. It is a self-supervised tomographic volume reconstruction approach designed to be chemistry-agnostic, eliminating the need for prior knowledge of the sample’s chemical composition. We showcase the efficacy of this method through its application on both simulated and experimental X-ray powder diffraction tomography data, acquired from a phantom sample and an NMC532 cylindrical lithium-ion battery.</p><figure></figure>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"2014 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obtaining parallax-free X-ray powder diffraction computed tomography data with a self-supervised neural network\",\"authors\":\"H. Dong, S. D. M. Jacques, K. T. Butler, O. Gutowski, A.-C. Dippel, M. von Zimmerman, A. M. Beale, A. Vamvakeros\",\"doi\":\"10.1038/s41524-024-01389-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we introduce a method designed to eliminate parallax artefacts present in X-ray powder diffraction computed tomography data acquired from large samples. These parallax artefacts manifest as artificial peak shifting, broadening and splitting, leading to inaccurate physicochemical information, such as lattice parameters and crystallite sizes. Our approach integrates a 3D artificial neural network architecture with a forward projector that accounts for the experimental geometry and sample thickness. It is a self-supervised tomographic volume reconstruction approach designed to be chemistry-agnostic, eliminating the need for prior knowledge of the sample’s chemical composition. We showcase the efficacy of this method through its application on both simulated and experimental X-ray powder diffraction tomography data, acquired from a phantom sample and an NMC532 cylindrical lithium-ion battery.</p><figure></figure>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01389-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01389-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了一种旨在消除从大型样品中获取的 X 射线粉末衍射计算机断层成像数据中存在的视差伪影的方法。这些视差伪影表现为人为的峰值移动、展宽和分裂,导致物理化学信息(如晶格参数和晶粒尺寸)不准确。我们的方法将三维人工神经网络架构与考虑到实验几何和样品厚度的前向投影仪集成在一起。它是一种自我监督的断层体积重建方法,其设计与化学无关,无需事先了解样品的化学成分。我们将这种方法应用于模拟和实验 X 射线粉末衍射层析成像数据,展示了它的功效,这些数据来自一个模型样品和一个 NMC532 圆柱形锂离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obtaining parallax-free X-ray powder diffraction computed tomography data with a self-supervised neural network

In this study, we introduce a method designed to eliminate parallax artefacts present in X-ray powder diffraction computed tomography data acquired from large samples. These parallax artefacts manifest as artificial peak shifting, broadening and splitting, leading to inaccurate physicochemical information, such as lattice parameters and crystallite sizes. Our approach integrates a 3D artificial neural network architecture with a forward projector that accounts for the experimental geometry and sample thickness. It is a self-supervised tomographic volume reconstruction approach designed to be chemistry-agnostic, eliminating the need for prior knowledge of the sample’s chemical composition. We showcase the efficacy of this method through its application on both simulated and experimental X-ray powder diffraction tomography data, acquired from a phantom sample and an NMC532 cylindrical lithium-ion battery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1