血清和牛奶中的纳米金颗粒及其对 DNA 无标记比色传感的影响

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-09-17 Epub Date: 2024-09-03 DOI:10.1021/acs.langmuir.4c02763
Yiting Wang, Ruinian Hua, Juewen Liu
{"title":"血清和牛奶中的纳米金颗粒及其对 DNA 无标记比色传感的影响","authors":"Yiting Wang, Ruinian Hua, Juewen Liu","doi":"10.1021/acs.langmuir.4c02763","DOIUrl":null,"url":null,"abstract":"<p><p>Label-free gold nanoparticle (AuNP)-based colorimetric biosensors have been widely used for the detection of DNA. However, the effect of the biological sample matrix has not been fully explored. In this work, we investigated the salt-induced aggregation of AuNPs as well as DNA adsorption in serum and milk. AuNPs of 13, 30, and 50 nm were used as probes. The detection was successful only in a clean buffer but failed in serum or milk. Serum and milk exhibited excellent protective properties, even 250 mM NaCl added did not induce the aggregation of AuNPs. After centrifugation of milk, the supernatant did not protect the AuNPs, whereas the redispersed pellet showed protection. The limit concentration of serum to prevent AuNPs from aggregating was 0.04% for 13 nm AuNPs and 0.01% serum for 50 nm AuNPs. In addition, serum reduced DNA adsorption, and the DNA was adsorbed to the protein corona instead of directly to the AuNP surface. These two factors can explain the difficulty of detection in protein-containing samples. This study articulates the adsorption of proteins by AuNPs in biological samples and offers useful insights into the biosensor design.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gold Nanoparticles in Serum and Milk and Their Effect for Label-Free Colorimetric Sensing of DNA.\",\"authors\":\"Yiting Wang, Ruinian Hua, Juewen Liu\",\"doi\":\"10.1021/acs.langmuir.4c02763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Label-free gold nanoparticle (AuNP)-based colorimetric biosensors have been widely used for the detection of DNA. However, the effect of the biological sample matrix has not been fully explored. In this work, we investigated the salt-induced aggregation of AuNPs as well as DNA adsorption in serum and milk. AuNPs of 13, 30, and 50 nm were used as probes. The detection was successful only in a clean buffer but failed in serum or milk. Serum and milk exhibited excellent protective properties, even 250 mM NaCl added did not induce the aggregation of AuNPs. After centrifugation of milk, the supernatant did not protect the AuNPs, whereas the redispersed pellet showed protection. The limit concentration of serum to prevent AuNPs from aggregating was 0.04% for 13 nm AuNPs and 0.01% serum for 50 nm AuNPs. In addition, serum reduced DNA adsorption, and the DNA was adsorbed to the protein corona instead of directly to the AuNP surface. These two factors can explain the difficulty of detection in protein-containing samples. This study articulates the adsorption of proteins by AuNPs in biological samples and offers useful insights into the biosensor design.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02763\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02763","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于无标记金纳米粒子(AuNP)的比色生物传感器已被广泛用于检测 DNA。然而,生物样品基质的影响尚未得到充分探讨。在这项工作中,我们研究了盐诱导的 AuNPs 聚集以及 DNA 在血清和牛奶中的吸附。我们使用 13、30 和 50 nm 的 AuNPs 作为探针。只有在干净的缓冲液中才能成功检测,而在血清或牛奶中则无法检测。血清和牛奶具有很好的保护特性,即使加入 250 mM NaCl 也不会诱发 AuNPs 的聚集。牛奶离心后,上清液对 AuNPs 没有保护作用,而重新分散的颗粒则显示出保护作用。防止 AuNPs 聚集的血清极限浓度为:13 nm AuNPs 为 0.04%,50 nm AuNPs 为 0.01%。此外,血清减少了 DNA 的吸附,DNA 被吸附在蛋白质冠上,而不是直接吸附在 AuNP 表面。这两个因素可以解释在含蛋白质的样品中难以检测的原因。这项研究阐明了 AuNPs 在生物样品中对蛋白质的吸附,为生物传感器的设计提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gold Nanoparticles in Serum and Milk and Their Effect for Label-Free Colorimetric Sensing of DNA.

Label-free gold nanoparticle (AuNP)-based colorimetric biosensors have been widely used for the detection of DNA. However, the effect of the biological sample matrix has not been fully explored. In this work, we investigated the salt-induced aggregation of AuNPs as well as DNA adsorption in serum and milk. AuNPs of 13, 30, and 50 nm were used as probes. The detection was successful only in a clean buffer but failed in serum or milk. Serum and milk exhibited excellent protective properties, even 250 mM NaCl added did not induce the aggregation of AuNPs. After centrifugation of milk, the supernatant did not protect the AuNPs, whereas the redispersed pellet showed protection. The limit concentration of serum to prevent AuNPs from aggregating was 0.04% for 13 nm AuNPs and 0.01% serum for 50 nm AuNPs. In addition, serum reduced DNA adsorption, and the DNA was adsorbed to the protein corona instead of directly to the AuNP surface. These two factors can explain the difficulty of detection in protein-containing samples. This study articulates the adsorption of proteins by AuNPs in biological samples and offers useful insights into the biosensor design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Linearly Scaling Molecular Dynamic Modeling To Simulate Picosecond Laser Ablation of a Silicon Carbide Crystal Advances in Aerosol Nanostructuring: Functions and Control of Next-Generation Particles. Electrospinning of LaB6/PEDOT:PSS/PEO Fiber Composites of Unique Morphologies. Engineering ZnIn2S4 Nanosheets with Zinc Vacancies: Unleashing Enhanced Photocatalytic Degradation of Tetracycline. Experiment and Simulation Study on the Adsorption Interaction between a Fluorescent Tracer and a Montmorillonite Crystal in Drilling Fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1