从虾壳废弃物中提取、利用和开发甲壳素/壳聚糖及其衍生物的进展。

IF 12 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Comprehensive Reviews in Food Science and Food Safety Pub Date : 2024-09-02 DOI:10.1111/1541-4337.70008
Mingyue Gao, Hanqi Tang, Hongguang Zhu
{"title":"从虾壳废弃物中提取、利用和开发甲壳素/壳聚糖及其衍生物的进展。","authors":"Mingyue Gao,&nbsp;Hanqi Tang,&nbsp;Hongguang Zhu","doi":"10.1111/1541-4337.70008","DOIUrl":null,"url":null,"abstract":"<p>Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste\",\"authors\":\"Mingyue Gao,&nbsp;Hanqi Tang,&nbsp;Hongguang Zhu\",\"doi\":\"10.1111/1541-4337.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.</p>\",\"PeriodicalId\":155,\"journal\":{\"name\":\"Comprehensive Reviews in Food Science and Food Safety\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Reviews in Food Science and Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70008\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70008","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在全球海产品消费中,虾的需求量很大。然而,这种扩张导致了大量虾壳废物的产生和处理。通过文献检索发现,自 2020 年以来,全球学者对虾壳废弃物及其甲壳素/壳聚糖表现出了前所未有的兴趣。然而,这些新见解缺乏相应的全面总结和分析。因此,本文对2020年至今虾壳中甲壳素/壳聚糖(包括微纳米衍生物)的提取方法、应用及最新研究进展进行了详细综述。研究结果表明,化学萃取法仍是从虾壳中提取和制备甲壳素/壳聚糖的主要技术。随着技术的进一步完善和发展,调整化学提取工艺的参数或采用微波和辐射等辅助技术,可根据特定需求定制具有不同特征(如脱乙酰度、分子量和乙酰化程度)的目标产品。此外,为了追求环保、高效和温和的提取工艺,近期的研究已转向微生物发酵和绿色溶剂提取甲壳素/壳聚糖的方法。除了传统的抗菌、成膜和封装功能外,壳聚糖在生物医学、食品加工、新材料、水处理和吸附领域的应用研究也在逐步深化。甲壳素/壳聚糖衍生物及其改性产品也是近年来的研究热点。然而,在快速发展的同时,甲壳素/壳聚糖及其衍生物的未来发展仍面临着作用机理不明确、工业化放大复杂等挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste

Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.20
自引率
2.70%
发文量
182
期刊介绍: Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology. CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results. Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity. The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.
期刊最新文献
Dairy and nondairy proteins as nano-architecture structures for delivering phenolic compounds: Unraveling their molecular interactions to maximize health benefits Food packaging technology considerations for designers: Attending to food, consumer, manufacturer, and environmental issues Machine vision combined with deep learning–based approaches for food authentication: An integrative review and new insights Reports of tropane alkaloid poisonings and analytical techniques for their determination in food crops and products from 2013 to 2023 Risks of foodborne pathogens associated with animal contamination of raw-agricultural commodities: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1