{"title":"基于乳液的多尺度结构设计实现了用于电磁干扰屏蔽的轻质超弹性石墨烯气凝胶","authors":"Yiman Zhang, Peng Min, Guoyao Yue, Bochao Niu, Lulu Li, Zhong-Zhen Yu, Hao-Bin Zhang","doi":"10.1002/smll.202405950","DOIUrl":null,"url":null,"abstract":"<p><p>Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm<sup>-3</sup> integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emulsion-Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding.\",\"authors\":\"Yiman Zhang, Peng Min, Guoyao Yue, Bochao Niu, Lulu Li, Zhong-Zhen Yu, Hao-Bin Zhang\",\"doi\":\"10.1002/smll.202405950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm<sup>-3</sup> integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202405950\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405950","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Emulsion-Based Multiscale Structural Design Realizes Lightweight and Superelastic Graphene Aerogels for Electromagnetic Interference Shielding.
Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm-3 integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.